Hibernate 1n Action

CHRISTIAN BAUER
GAVIN KING

MANNING

Greenwich
(74° w. long.)

contents

foreword xi

preface xiii

acknowledgments xv

about this book xvi

about Hibernate3 and EJB 3 xx
author online xxi

about the title and cover xxii

Understanding object/relational persistence 1

11

1.2

1.3

14

15

What is persistence? 3
Relational databases 3 = Understanding SQL 4 = Using SQL
inJava 5 = Persistence in object-oriented applications 5

The paradigm mismatch 7
The problem of granularity 9 = The problem of subtypes 10
The problem of identity 11 = Problems relating to associations 13
The problem of object graph navigation 14 = The cost of the
mismatch 15

Persistence layers and alternatives 16
Layered architecture 17 = Hand-coding a persistence layer with
SQL/JDBC 18 = Using serialization 19 = Considering EJB
entity beans 20 = Object-oriented database systems 21
Other options 22

Object/relational mapping 22
What is ORM? 23 = Generic ORM problems 25
Why ORM? 26

Summary 29

Vi CONTENTS

Introducing and integrating Hibernate 30
2.1 “Hello World” with Hibernate 31

2.2 Understanding the architecture 36
The core interfaces 38 = Callback interfaces 40
Types 40 = Extension interfaces 41

2.3 Basic configuration 41
Creating a SessionFactory 42 = Configuration in

non-managed environments 45 = Configuration in
managed environments 48

2.4 Advanced configuration settings 51
Using XML-based configuration 51 = JNDI-bound

SessionFactory 53 = Logging 54 = Java Management
Extensions (JMX) 55

25 Summary 58

Mapping persistent classes 59

3.1 The CaveatEmptor application 60
Analyzing the business domain 61
The CaveatEmptor domain model 61

3.2 Implementing the domain model 64
Addressing leakage of concerns 64 = Transparent and
automated persistence 65 = Writing POJOs 67
Implementing POJO associations 69 = Adding logic to
accessor methods 73

3.3 Defining the mapping metadata 75
Metadata in XML 75 = Basic property and class

mappings 78 = Attribute-oriented programming 84
Manipulating metadata at runtime 86

3.4 Understanding object identity 87
Identity versus equality 87 = Database identity with
Hibernate 88 = Choosing primary keys 90
3.5 Fine-grained object models 92
Entity and value types 93 = Using components 93
3.6 Mapping class inheritance 97

Table per concrete class 97 = Table per class hierarchy 99
Table per subclass 101 = Choosing a strategy 104

CONTENTS vii

3.7 Introducing associations 105
Managed associations? 106 = Multiplicity 106
The simplest possible association 107 = Making the association
bidirectional 108 = A parent/child relationship 111

3.8 Summary 112

Working with persistent objects 114

4.1 The persistence lifecycle 115
Transient objects 116 = Persistent objects 117 = Detached
objects 118 = The scope of object identity 119 = Outside the
identity scope 121 = Implementing equals() and hashCode() 122

4.2 The persistence manager 126
Making an object persistent 126 = Updating the persistent state
of a detached instance 127 = Retrieving a persistent object 129
Updating a persistent object 129 = Making a persistent object
transient 129 = Making a detached object transient 130

4.3 Using transitive persistence in Hibernate 131
Persistence by reachability 131 = Cascading persistence with
Hibernate 133 = Managing auction categories 134
Distinguishing between transient and detached instances 138

4.4 Retrieving objects 139
Retrieving objects by identifier 140 = Introducing HQL 141
Quiery by criteria 142 = Query by example 143 = Fetching
strategies 143 = Selecting a fetching strategy in mappings 146
Tuning object retrieval 151

45 Summary 152

Transactions, concurrency, and caching 154
5.1 Transactions, concurrency, and caching 154

5.2 Understanding database transactions 156
JDBC and JTA transactions 157 = The Hibernate Transaction
APl 158 = Flushingthe Session 160 = Understanding isolation
levels 161 = Choosing an isolation level 163 = Setting an
isolation level 165 = Using pessimistic locking 165

5.3 Working with application transactions 168
Using managed versioning 169 = Granularity of a
Session 172 = Other ways to implement optimistic locking 174

viii CONTENTS

5.4 Caching theory and practice 175
Caching strategies and scopes 176 = The Hibernate cache
architecture 179 = Caching in practice 185

55 Summary 194

Advanced mapping concepts 195
6.1 Understanding the Hibernate type system 196
Built-in mapping types 198 = Using mapping types 200
6.2 Mapping collections of value types 211
Sets, bags, lists, and maps 211
6.3 Mapping entity associations 220
One-to-one associations 220 = Many-to-many associations 225
6.4 Mapping polymorphic associations 234
Polymorphic many-to-one associations 234 = Polymorphic

collections 236 = Polymorphic associations and table-per-
concrete-class 237

6.5 Summary 239

Retrieving objects efficiently 241

7.1 Executing queries 243
The query interfaces 243 = Binding parameters 245
Using named queries 249

7.2 Basic queries for objects 250
The simplest query 250 = Using aliases 251 = Polymorphic
queries 251 = Restriction 252 = Comparison operators 253
String matching 255 = Logical operators 256 = Ordering query
results 257

7.3 Joining associations 258
Hibernate join options 259 = Fetching associations 260
Using aliases with joins 262 = Using implicit joins 265
Theta-style joins 267 = Comparing identifiers 268

7.4 Writing report queries 269
Projection 270 = Using aggregation 272 = Grouping 273
Restricting groups with having 274 = Improving performance
with report queries 275

CONTENTS

7.5 Advanced query techniques 276
Dynamic queries 276 = Collection filters 279
Subqueries 281 = Native SQL queries 283

7.6 Optimizing object retrieval 286
Solving the n+1 selects problem 286 = Using iterate()
queries 289 = Caching queries 290

7.7 Summary 292

Writing Hibernate applications 294
8.1 Designing layered applications 295
Using Hibernate in a servlet engine 296
Using Hibernate in an EJB container 311
8.2 Implementing application transactions 320
Approving a new auction 321 = Doing it the hard way 322

Using detached persistent objects 324 = Using a long session 325
Choosing an approach to application transactions 329

8.3 Handling special kinds of data 330

Legacy schemas and composite keys 330 = Audit logging 340
8.4 Summary 347

Using the toolset 348
9.1 Development processes 349

Top down 350 = Bottomup 350 = Middle out (metadata
oriented) 350 = Meet in the middle 350
Roundtripping 351
9.2 Automatic schema generation 351
Preparing the mapping metadata 352 = Creating the
schema 355 = Updating the schema 357
9.3 Generating POJO code 358
Adding meta-attributes 358 = Generating finders 360
Configuring hbm2java 362 = Running hbm2java 363
9.4 Existing schemas and Middlegen 364
Starting Middlegen 364 = Restricting tables and

relationships 366 = Customizing the metadata generation 368
Generating hbm2java and XDoclet metadata 370

ixX

CONTENTS

9.5 XDoclet 372

Setting value type attributes 372 = Mapping entity
associations 374 = Running XDoclet 375
9.6 Summary 376

appendix A: SQL fundamentals 378

appendix B: ORM implementation strategies 382
B.1 Properties or fields? 383

B.2 Dirty-checking strategies 384

appendix C: Back in the real world 388
C.1 The strange copy 389

C.2 The more the better 390

C.3 We don’t need primary keys 390
C.4 Timeisn'tlinear 391

C.5 Dynamically unsafe 391

C.6 Tosynchronize or not? 392

C.7 Really fat client 393

C.8 Resuming Hibernate 394

references 395
index 397

Understanding
object/relational persistence

This chapter covers

Object persistence with SQL databases
The object/relational paradigm mismatch

Persistence layers in object-oriented
applications

Object/relational mapping basics

CHAPTER 1
Understanding object/relational persistence

The approach to managing persistent data has been a key design decision in every
software project we’ve worked on. Given that persistent data isn’t a new or unusual
requirement for Java applications, you’d expect to be able to make a simple choice
among similar, well-established persistence solutions. Think of web application
frameworks (Jakarta Struts versus WebWork), GUI component frameworks (Swing
versus SWT), or template engines (JSP versus Velocity). Each of the competing
solutions has advantages and disadvantages, but they at least share the same scope
and overall approach. Unfortunately, this isn’t yet the case with persistence tech-
nologies, where we see some wildly differing solutions to the same problem.

For several years, persistence has been a hot topic of debate in the Java com-
munity. Many developers don’t even agree on the scope of the problem. Is “per-
sistence” a problem that is already solved by relational technology and extensions
such as stored procedures, or is it a more pervasive problem that must be
addressed by special Java component models such as EJB entity beans? Should we
hand-code even the most primitive CRUD (create, read, update, delete) opera-
tions in SQL and JDBC, or should this work be automated? How do we achieve
portability if every database management system has its own SQL dialect? Should
we abandon SQL completely and adopt a new database technology, such as object
database systems? Debate continues, but recently a solution called object/relational
mapping (ORM) has met with increasing acceptance. Hibernate is an open source
ORM implementation.

Hibernate is an ambitious project that aims to be a complete solution to the
problem of managing persistent data in Java. It mediates the application’s interac-
tion with a relational database, leaving the developer free to concentrate on the
business problem at hand. Hibernate is an non-intrusive solution. By this we mean
you aren’t required to follow many Hibernate-specific rules and design patterns
when writing your business logic and persistent classes; thus, Hibernate integrates
smoothly with most new and existing applications and doesn’t require disruptive
changes to the rest of the application.

This book is about Hibernate. We’ll cover basic and advanced features and
describe some recommended ways to develop new applications using Hibernate.
Often, these recommendations won’t be specific to Hibernate—sometimes they
will be our ideas about the best ways to do things when working with persistent
data, explained in the context of Hibernate. Before we can get started with Hiber-
nate, however, you need to understand the core problems of object persistence
and object/relational mapping. This chapter explains why tools like Hibernate
are needed.

11

111

What is persistence? 3

First, we define persistent data management in the context of object-oriented
applications and discuss the relationship of SQL, JDBC, and Java, the underlying
technologies and standards that Hibernate is built on. We then discuss the so-
called object/relational paradigm mismatch and the generic problems we encounter in
object-oriented software development with relational databases. As this list of prob-
lems grows, it becomes apparent that we need tools and patterns to minimize the
time we have to spend on the persistence-related code of our applications. After we
look at alternative tools and persistence mechanisms, you’ll see that ORM is the
best available solution for many scenarios. Our discussion of the advantages and
drawbacks of ORM gives you the full background to make the best decision when
picking a persistence solution for your own project.

The best way to learn isn’t necessarily linear. We understand that you probably
want to try Hibernate right away. If this is how you’d like to proceed, skip to
chapter 2, section 2.1, “Getting started,” where we jump in and start coding a
(small) Hibernate application. You’ll be able to understand chapter 2 without
reading this chapter, but we also recommend that you return here at some point
as you circle through the book. That way, you’ll be prepared and have all the back-
ground concepts you need for the rest of the material.

What is persistence?

Almost all applications require persistent data. Persistence is one of the funda-
mental concepts in application development. If an information system didn’t pre-
serve data entered by users when the host machine was powered off, the system
would be of little practical use. When we talk about persistence in Java, we’re nor-
mally talking about storing data in a relational database using SQL. We start by tak-
ing a brief look at the technology and how we use it with Java. Armed with that
information, we then continue our discussion of persistence and how it’s imple-
mented in object-oriented applications.

Relational databases

You, like most other developers, have probably worked with a relational database.
In fact, most of us use a relational database every day. Relational technology is a
known quantity. This alone is sufficient reason for many organizations to choose
it. But to say only this is to pay less respect than is due. Relational databases are so
entrenched not by accident but because they’re an incredibly flexible and robust
approach to data management.

1.1.2

CHAPTER 1
Understanding object/relational persistence

A relational database management system isn’t specific to Java, and a relational
database isn’t specific to a particular application. Relational technology provides a
way of sharing data among different applications or among different technologies
that form part of the same application (the transactional engine and the reporting
engine, for example). Relational technology is a common denominator of many
disparate systems and technology platforms. Hence, the relational data model is
often the common enterprise-wide representation of business entities.

Relational database management systems have SQL-based application program-
ming interfaces; hence we call today’s relational database products SQL database
management systems or, when we’re talking about particular systems, SQL databases.

Understanding SQL

To use Hibernate effectively, a solid understanding of the relational model and
SQL is a prerequisite. You’ll need to use your knowledge of SQL to tune the per-
formance of your Hibernate application. Hibernate will automate many repetitive
coding tasks, but your knowledge of persistence technology must extend beyond
Hibernate itself if you want take advantage of the full power of modern SQL data-
bases. Remember that the underlying goal is robust, efficient management of per-
sistent data.

Let’s review some of the SQL terms used in this book. You use SQL as a data def-
inition language (DDL) to create a database schema with crREaTE and ALTER State-
ments. After creating tables (and indexes, sequences, and so on), you use SQL as a
data manipulation language (DML). With DML, you execute SQL operations that
manipulate and retrieve data. The manipulation operations include insertion,
update, and deletion. You retrieve data by executing queries with restriction, projection,
and join operations (including the Cartesian product). For efficient reporting, you
use SQL to group, order, and aggregate data in arbitrary ways. You can even nest SQL
statements inside each other; this technique is called subselecting. You have proba-
bly used SQL for many years and are familiar with the basic operations and state-
ments written in this language. Still, we know from our own experience that SQL is
sometimes hard to remember and that some terms vary in usage. To understand
this book, we have to use the same terms and concepts; so, we advise you to read
appendix A if any of the terms we’ve mentioned are new or unclear.

SQL knowledge is mandatory for sound Java database application development.
If you need more material, get a copy of the excellent book SQL Tuning by Dan Tow
[Tow 2003]. Also read An Introduction to Database Systems [Date 2004] for the theory,
concepts, and ideals of (relational) database systems. Although the relational

1.1.3

114

What is persistence? 5

database is one part of ORM, the other part, of course, consists of the objects in
your Java application that need to be persisted to the database using SQL.

Using SQL in Java

When you work with an SQL database in a Java application, the Java code issues
SQL statements to the database via the Java DataBase Connectivity (JDBC) API. The
SQL itself might have been written by hand and embedded in the Java code, or it
might have been generated on the fly by Java code. You use the JDBC API to bind
arguments to query parameters, initiate execution of the query, scroll through the
guery result table, retrieve values from the result set, and so on. These are low-
level data access tasks; as application developers, we’re more interested in the
business problem that requires this data access. It isn’t clear that we should be
concerning ourselves with such tedious, mechanical details.

What we’d really like to be able to do is write code that saves and retrieves com-
plex objects—the instances of our classes—to and from the database, relieving us
of this low-level drudgery.

Since the data access tasks are often so tedious, we have to ask: Are the relational
data model and (especially) SQL the right choices for persistence in object-
oriented applications? We answer this question immediately: Yes! There are many
reasons why SQL databases dominate the computing industry. Relational database
management systems are the only proven data management technology and are
almost always a requirement in any Java project.

However, for the last 15 years, developers have spoken of a paradigm mismatch.
This mismatch explains why so much effort is expended on persistence-related
concerns in every enterprise project. The paradigms referred to are object model-
ing and relational modeling, or perhaps object-oriented programming and SQL.
Let’s begin our exploration of the mismatch problem by asking what persistence
means in the context of object-oriented application development. First we’ll widen
the simplistic definition of persistence stated at the beginning of this section to a
broader, more mature understanding of what is involved in maintaining and using
persistent data.

Persistence in object-oriented applications

In an object-oriented application, persistence allows an object to outlive the pro-
cess that created it. The state of the object may be stored to disk and an object
with the same state re-created at some point in the future.

This application isn’t limited to single objects—entire graphs of interconnected
objects may be made persistent and later re-created in a new process. Most objects

CHAPTER 1
Understanding object/relational persistence

aren’t persistent; a transient object has a limited lifetime that is bounded by the life
of the process that instantiated it. Almost all Java applications contain a mix of per-
sistent and transient objects; hence we need a subsystem that manages our persis-
tent data.

Modern relational databases provide a structured representation of persistent
data, enabling sorting, searching, and aggregation of data. Database management
systems are responsible for managing concurrency and data integrity; they’re
responsible for sharing data between multiple users and multiple applications. A
database management system also provides data-level security. When we discuss
persistence in this book, we’re thinking of all these things:

m Storage, organization, and retrieval of structured data
m Concurrency and data integrity
= Data sharing

In particular, we’re thinking of these problems in the context of an object-ori-
ented application that uses a domain model.

An application with a domain model doesn’t work directly with the tabular rep-
resentation of the business entities; the application has its own, object-oriented
model of the business entities. If the database has 1TEM and BID tables, the Java
application defines 1tem and Bid classes.

Then, instead of directly working with the rows and columns of an SQL result
set, the business logic interacts with this object-oriented domain model and its
runtime realization as a graph of interconnected objects. The business logic is
never executed in the database (as an SQL stored procedure), it’s implemented in
Java. This allows business logic to make use of sophisticated object-oriented con-
cepts such as inheritance and polymorphism. For example, we could use well-
known design patterns such as Strategy, Mediator, and Composite [GOF 1995], all of
which depend on polymorphic method calls. Now a caveat: Not all Java applica-
tions are designed this way, nor should they be. Simple applications might be much
better off without a domain model. SQL and the JDBC API are perfectly serviceable
for dealing with pure tabular data, and the new JDBC RowSet (Sun JCP, JSR 114)
makes CRUD operations even easier. Working with a tabular representation of per-
sistent data is straightforward and well understood.

However, in the case of applications with nontrivial business logic, the domain
model helps to improve code reuse and maintainability significantly. We focus on
applications with a domain model in this book, since Hibernate and ORM in gen-
eral are most relevant to this kind of application.

12

The paradigm mismatch 7

If we consider SQL and relational databases again, we finally observe the mis-
match between the two paradigms.

SQL operations such as projection and join always result in a tabular representa-
tion of the resulting data. This is quite different than the graph of interconnected
objects used to execute the business logic in a Java application! These are funda-
mentally different models, not just different ways of visualizing the same model.

With this realization, we can begin to see the problems—some well understood
and some less well understood—that must be solved by an application that com-
bines both data representations: an object-oriented domain model and a persistent
relational model. Let’s take a closer look.

The paradigm mismatch

The paradigm mismatch can be broken
L _ down into several parts, which we’ll exam-
ine one at a time. Let’s start our explora-
Figure 1.1 A simple UML class diagram of the tionwith asimple example thatis problem
user and billing details entities free. Then, as we build on it, you’ll begin
to see the mismatch appear.
Suppose you have to design and implement an online e-commerce application. In
this application, you’d need a class to represent information about a user of the
system, and another class to represent information about the user’s billing details,
as shown in figure 1.1.

Looking at this diagram, you see that a user has many BillingDetails. YOU can
navigate the relationship between the classes in both directions. To begin with, the
classes representing these entities might be extremely simple:

public class User {

private String userName;
private String name;

private String address;
private Set billingDetails;

// accessor methods (get/set pairs), business methods, etc.

}

public class BillingDetails {
private String accountNumber;
private String accountName;
private String accountType;
private User user;

CHAPTER 1
Understanding object/relational persistence

//methods, get/set pairs...

}

Note that we’re only interested in the state of the entities with regard to persis-
tence, so we’ve omitted the implementation of property accessors and business
methods (such as getUserName () Or billAuction()). It’s quite easy to come up
with a good SQL schema design for this case:
create table USER (
USERNAME VARCHAR(15) NOT NULL PRIMARY KEY,
NAME VARCHAR (50) NOT NULL,

ADDRESS VARCHAR (100)
)

create table BILLING_DETAILS (
ACCOUNT_NUMBER VARCHAR(10) NOT NULL PRIMARY Key,
ACCOUNT_NAME VARCHAR (50) NOT NULL,
ACCOUNT_TYPE VARCHAR(2) NOT NULL,
USERNAME VARCHAR(15) FOREIGN KEY REFERENCES USER

)

The relationship between the two entities is represented as the foreign key,
USERNAME, iN BILLING_DETAILS. For this simple object model, the object/relational
mismatch is barely in evidence; it’s straightforward to write JDBC code to insert,
update, and delete information about user and billing details.

Now, let’s see what happens when we consider something a little more realistic.
The paradigm mismatch will be visible when we add more entities and entity rela-
tionships to our application.

The most glaringly obvious problem with our current implementation is that
we’ve modeled an address as a simple string value. In most systems, it’s necessary
to store street, city, state, country, and ZIP code information separately. Of
course, we could add these properties directly to the user class, but since it’s
highly likely that other classes in the system will also carry address information, it
makes more sense to create a separate Address class. The updated object model is
shown in figure 1.2.

Should we also add an aAppress table? Not necessarily. It’s common to keep
address information in the user table, in individual columns. This design is likely
to perform better, since we don’t require a table join to retrieve the user and
address in asingle query. The nicest solution might even be to create a user-defined

Figure 1.2 The User has an Address.

121

The paradigm mismatch 9

SQL data type to represent addresses and to use a single column of that new type
in the user table instead of several new columns.

Basically, we have the choice of adding either several columns or a single col-
umn (of a new SQL data type). This is clearly a problem of granularity.

The problem of granularity

Granularity refers to the relative size of the objects you’re working with. When
we’re talking about Java objects and database tables, the granularity problem
means persisting objects that can have various kinds of granularity to tables and
columns that are inherently limited in granularity.

Let’s return to our example. Adding a new data type to store address Java
objects in a single column to our database catalog sounds like the best approach.
After all, a new address type (class) in Java and a new ApprESS SQL data type should
guarantee interoperability. However, you’ll find various problems if you check the
support for user-defined column types (UDT) in today’s SQL database manage-
ment systems.

UDT support is one of a number of so-called object-relational extensions to tradi-
tional SQL. Unfortunately, UDT support is a somewhat obscure feature of most SQL
database management systems and certainly isn’t portable between different sys-
tems. The SQL standard supports user-defined data types, but very poorly. For this
reason and (whatever) other reasons, use of UDTs isn’t common practice in the
industry at this time—and it’s unlikely that you’ll encounter a legacy schema that
makes extensive use of UDTs. We therefore can’t store objects of our new Address
class in a single new column of an equivalent user-defined SQL data type. Our solu-
tion for this problem has several columns, of vendor-defined SQL types (such as
boolean, numeric, and string data types). Considering the granularity of our tables
again, the user table is usually defined as follows:

create table USER (

USERNAME VARCHAR(15) NOT NULL PRIMARY KEY,
NAME VARCHAR(50) NOT NULL,

ADDRESS_STREET VARCHAR(50),

ADDRESS_CITY VARCHAR(15),

ADDRESS_STATE VARCHAR(15),

ADDRESS_ZIPCODE VARCHAR(5),
ADDRESS_COUNTRY VARCHAR (15)

)

This leads to the following observation: Classes in our domain object model come
in a range of different levels of granularity—from coarse-grained entity classes like

10

1.2.2

CHAPTER 1
Understanding object/relational persistence

User, to finer grained classes like address, right down to simple string-valued
properties such as zipcode.

In contrast, just two levels of granularity are visible at the level of the database:
tables such as user, along with scalar columns such as AbpreSS_z1pCODE. This obvi-
ously isn’t as flexible as our Java type system. Many simple persistence mechanisms
fail to recognize this mismatch and so end up forcing the less flexible representa-
tion upon the object model. We’ve seen countless user classes with properties
named zipcode!

It turns out that the granularity problem isn’t especially difficult to solve.
Indeed, we probably wouldn’t even list it, were it not for the fact that it’s visible in
S0 many existing systems. We describe the solution to this problem in chapter 3,
section 3.5, “Fine-grained object models.”

A much more difficult and interesting problem arises when we consider domain
object models that use inheritance, a feature of object-oriented design we might use
to bill the users of our e-commerce application in new and interesting ways.

The problem of subtypes

In Java, we implement inheritance using super- and subclasses. To illustrate why
this can present a mismatch problem, let’s continue to build our example. Let’s
add to our e-commerce application so that we now can accept not only bank
account billing, but also credit and debit cards. We therefore have several meth-
ods to bill a user account. The most natural way to reflect this change in our
object model is to use inheritance for the BillingDetails class.

We might have an abstract BillingDetails superclass along with several con-
crete subclasses: creditCard, DirectDebit, Cheque, and so on. Each of these sub-
classes will define slightly different data (and completely different functionality
that acts upon that data). The UML class diagram in figure 1.3 illustrates this
object model.

We notice immediately that SQL provides no direct support for inheritance. We
can’t declare that a CREDIT_CARD_DETAILS table is a subtype of BILLING_DETAILS by
Writing, Say, CREATE TABLE CREDIT_CARD_DETAILS EXTENDS BILLING_DETAILS (...).

BillingDetails

| | Figure 1.3

- Using inheritance for different
| CreditCard || BankAccount | billing strategies

1.2.3

The paradigm mismatch 11

In chapter 3, section 3.6, “Mapping class inheritance,” we discuss how object/
relational mapping solutions such as Hibernate solve the problem of persisting a
class hierarchy to a database table or tables. This problem is now quite well under-
stood in the community, and most solutions support approximately the same func-
tionality. But we aren’t quite finished with inheritance—as soon as we introduce
inheritance into the object model, we have the possibility of polymorphism.

The User class has an association to the BillingDetails superclass. Thisis a poly-
morphic association. At runtime, a User object might be associated with an instance
of any of the subclasses of Bi1lingDetails. Similarly, we'd like to be able to write
gueries that refer to the BillingDetails class and have the query return instances
of its subclasses. This feature is called polymorphic queries.

Since SQL databases don’t provide a notion of inheritance, it’s hardly surprising
that they also lack an obvious way to represent a polymorphic association. A stan-
dard foreign key constraint refers to exactly one table; it isn’t straightforward to
define a foreign key that refers to multiple tables. We might explain this by saying
that Java (and other object-oriented languages) is less strictly typed than SQL. For-
tunately, two of the inheritance mapping solutions we show in chapter 3 are
designed to accommodate the representation of polymorphic associations and effi-
cient execution of polymorphic queries.

So, the mismatch of subtypes is one in which the inheritance structure in your
Java model must be persisted in an SQL database that doesn’t offer an inheritance
strategy. The next aspect of the mismatch problem is the issue of object identity.
You probably noticed that we defined usernNaME as the primary key of our USEr
table. Was that a good choice? Not really, as you’ll see next.

The problem of identity

Although the problem of object identity might not be obvious at first, we’ll encoun-
ter it often in our growing and expanding example e-commerce system. This
problem can be seen when we consider two objects (for example, two Users) and
check if they’re identical. There are three ways to tackle this problem, two in the
Java world and one in our SQL database. As expected, they work together only
with some help.

Java objects define two different notions of sameness:

= Object identity (roughly equivalent to memory location, checked with a==b)

m Equality as determined by the implementation of the equals() method
(also called equality by value)

12

CHAPTER 1
Understanding object/relational persistence

On the other hand, the identity of a database row is expressed as the primary key
value. As you’ll see in section 3.4, “Understanding object identity,” neither
equals () nor == is naturally equivalent to the primary key value. It’s common for
several (nonidentical) objects to simultaneously represent the same row of the
database. Furthermore, some subtle difficulties are involved in implementing
equals () correctly for a persistent class.

Let’s discuss another problem related to database identity with an example. In
our table definition for USER, we’ve used USERNAME as a primary key. Unfortunately,
this decision makes it difficult to change a username: We’d need to update not only
the userNAME column in USER, but also the foreign key column in BILLING_DETAILS.
So, later in the book, we’ll recommend that you use surrogate keys wherever possible.
A surrogate key is a primary key column with no meaning to the user. For example,
we might change our table definitions to look like this:

create table USER (

USER_ID BIGINT NOT NULL PRIMARY KEY,

USERNAME VARCHAR(15) NOT NULL UNIQUE,
NAME VARCHAR (50) NOT NULL,

)

create table BILLING_DETAILS (

BILLING_DETAILS_ID BIGINT NOT NULL PRIMARY KEY,
ACCOUNT_NUMBER VARCHAR(10) NOT NULL UNIQUE,
ACCOUNT_NAME VARCHAR (50) NOT NULL,
ACCOUNT_TYPE VARCHAR(2) NOT NULL,

USER_ID BIGINT FOREIGN KEY REFERENCES USER

)

The user_1D and BILLING_DETAILS_ID columns contain system-generated values.
These columns were introduced purely for the benefit of the relational data model.
How (if at all) should they be represented in the object model? We’ll discuss this
question in section 3.4 and find a solution with object/relational mapping.

In the context of persistence, identity is closely related to how the system han-
dles caching and transactions. Different persistence solutions have chosen various
strategies, and this has been an area of confusion. We cover all these interesting
topics—and show how they’re related—in chapter 5.

The skeleton e-commerce application we’ve designed and implemented has
served our purpose well. We’ve identified the mismatch problems with mapping
granularity, subtypes, and object identity. We’re almost ready to move on to other
parts of the application. But first, we need to discuss the important concept of asso-
ciations—that is, how the relationships between our classes are mapped and han-
dled. Is the foreign key in the database all we need?

The paradigm mismatch 13

1.2.4 Problems relating to associations

In our object model, associations represent the relationships between entities.
You remember that the User, Address, and BillingDetails classes are all associ-
ated. Unlike address, BillingDetails stands on its own. BillingDetails objects
are stored in their own table. Association mapping and the management of entity
associations are central concepts of any object persistence solution.

Object-oriented languages represent associations using object references and col-
lections of object references. In the relational world, an association is represented
as a foreign key column, with copies of key values in several tables. There are subtle
differences between the two representations.

Object references are inherently directional; the association is from one object
to the other. If an association between objects should be navigable in both direc-
tions, you must define the association twice, once in each of the associated classes.
You’ve already seen this in our object model classes:

public class User {
private Set billingDetails;

}

public class BillingDetails {
private User user;

}

On the other hand, foreign key associations aren’t by nature directional. In fact,
navigation has no meaning for a relational data model, because you can create
arbitrary data associations with table joins and projection.

Actually, it isn’t possible to determine the multiplicity of a unidirectional associ-
ation by looking only at the Java classes. Java associations may have many-to-many
multiplicity. For example, our object model might have looked like this:

public class User {
private Set billingDetails;

}

public class BillingDetails {
private Set users;

}

Table associations on the other hand, are always one-to-many or one-to-one. You can
see the multiplicity immediately by looking at the foreign key definition. The fol-
lowing is a one-to-many association (or, if read in that direction, a many-to-one):

14

1.25

CHAPTER 1
Understanding object/relational persistence

USER_ID BIGINT FOREIGN KEY REFERENCES USER
These are one-to-one associations:

USER_ID BIGINT UNIQUE FOREIGN KEY REFERENCES USER

BILLING_DETAILS_ID BIGINT PRIMARY KEY FOREIGN KEY REFERENCES USER
If you wish to represent a many-to-many association in a relational database, you
must introduce a new table, called a link table. This table doesn’t appear anywhere
in the object model. For our example, if we consider the relationship between a
user and the user’s billing information to be many-to-many, the link table is
defined as follows:

CREATE TABLE USER_BILLING_DETAILS (

USER_ID BIGINT FOREIGN KEY REFERENCES USER,
BILLING_DETAILS_ID BIGINT FOREIGN KEY REFERENCES BILLING_DETAILS
PRIMARY KEY (USER_ID, BILLING_DETAILS_ID)

)

We’ll discuss association mappings in great detail in chapters 3 and 6.

So far, the issues we’ve considered are mainly structural. We can see them by
considering a purely static view of the system. Perhaps the most difficult problem
in object persistence is a dynamic. It concerns associations, and we’ve already
hinted at it when we drew a distinction between object graph navigation and table joins
in section 1.1.4, “Persistence in object-oriented applications.” Let’s explore this sig-
nificant mismatch problem in more depth.

The problem of object graph navigation

There is a fundamental difference in the way you access objects in Java and in a
relational database. In Java, when you access the billing information of a user, you
call aUser.getBillingDetails () .getAccountNumber (). This is the most natural
way to access object-oriented data and is often described as walking the object graph.
You navigate from one object to another, following associations between instances.
Unfortunately, this isn’t an efficient way to retrieve data from an SQL database.

The single most important thing to do to improve performance of data access
code is to minimize the number of requests to the database. The most obvious way to do
this is to minimize the number of SQL queries. (Other ways include using stored
procedures or the JDBC batch API.)

Therefore, efficient access to relational data using SQL usually requires the use
of joins between the tables of interest. The number of tables included in the join
determines the depth of the object graph you can navigate. For example, if we
need to retrieve a user and aren’t interested in the user’s BillingDetails, We US€e
this simple query:

1.2.6

The paradigm mismatch 15

select * from USER u where u.USER_ID = 123

On the other hand, if we need to retrieve the same user and then subsequently
visit each of the associated BillingDetails instances, we use a different query:

select *

from USER u

left outer join BILLING_DETAILS bd on bd.USER_ID = u.USER_ID

where u.USER_ID = 123
As you can see, we need to know what portion of the object graph we plan to
access when we retrieve the initial user, before we start navigating the object graph!

On the other hand, any object persistence solution provides functionality for
fetching the data of associated objects only when the object is first accessed. How-
ever, this piecemeal style of data access is fundamentally inefficient in the context
of a relational database, because it requires execution of one select statement for
each node of the object graph. This is the dreaded n+1 selects problem.

This mismatch in the way we access objects in Java and in a relational database
is perhaps the single most common source of performance problems in Java appli-
cations. Yet, although we’ve been blessed with innumerable books and magazine
articles advising us to use stringBuffer for string concatenation, it seems impossi-
ble to find any advice about strategies for avoiding the n+1 selects problem. Fortu-
nately, Hibernate provides sophisticated features for efficiently fetching graphs of
objects from the database, transparently to the application accessing the graph. We
discuss these features in chapters 4 and 7.

We now have a quite elaborate list of object/relational mismatch problems,
and it will be costly to find solutions, as you might know from experience. This
cost is often underestimated, and we think this is a major reason for many failed
software projects.

The cost of the mismatch

The overall solution for the list of mismatch problems can require a significant
outlay of time and effort. In our experience, the main purpose of up to 30 per-
cent of the Java application code written is to handle the tedious SQL/JDBC and
the manual bridging of the object/relational paradigm mismatch. Despite all this
effort, the end result still doesn’t feel quite right. We’ve seen projects nearly sink
due to the complexity and inflexibility of their database abstraction layers.

One of the major costs is in the area of modeling. The relational and object mod-
els must both encompass the same business entities. But an object-oriented purist
will model these entities in a very different way than an experienced relational data

16

13

CHAPTER 1
Understanding object/relational persistence

modeler. The usual solution to this problem is to bend and twist the object model
until it matches the underlying relational technology.

This can be done successfully, but only at the cost of losing some of the advan-
tages of object orientation. Keep in mind that relational modeling is underpinned
by relational theory. Object orientation has no such rigorous mathematical defini-
tion or body of theoretical work. So, we can’t look to mathematics to explain how
we should bridge the gap between the two paradigms—there is no elegant trans-
formation waiting to be discovered. (Doing away with Java and SQL and starting
from scratch isn’t considered elegant.)

The domain modeling mismatch problem isn’t the only source of the inflexibil-
ity and lost productivity that lead to higher costs. A further cause is the JDBC API
itself. JDBC and SQL provide a statement- (that is, command-) oriented approach to
moving data to and from an SQL database. A structural relationship must be spec-
ified at least three times (Insert, Update, Select), adding to the time required for
design and implementation. The unique dialect for every SQL database doesn’t
improve the situation.

Recently, it has been fashionable to regard architectural or pattern-based mod-
els as a partial solution to the mismatch problem. Hence, we have the entity bean
component model, the data access object (DAO) pattern, and other practices to
implement data access. These approaches leave most or all of the problems listed
earlier to the application developer. To round out your understanding of object
persistence, we need to discuss application architecture and the role of a persistence
layer in typical application design.

Persistence layers and alternatives

In a medium- or large-sized application, it usually makes sense to organize classes
by concern. Persistence is one concern. Other concerns are presentation, work-
flow, and business logic. There are also the so-called “cross-cutting” concerns, which
may be implemented generically—by framework code, for example. Typical cross-
cutting concerns include logging, authorization, and transaction demarcation.

A typical object-oriented architecture comprises layers that represent the
concerns. It’s normal, and certainly best practice, to group all classes and
components responsible for persistence into a separate persistence layer in a layered
system architecture.

In this section, we first look at the layers of this type of architecture and why we
use them. After that, we focus on the layer we’re most interested in—the persis-
tence layer—and some of the ways it can be implemented.

Persistence layers and alternatives 17

1.3.1 Layered architecture

A layered architecture defines interfaces between code that implements the various
concerns, allowing a change to the way one concern is implemented without sig-
nificant disruption to code in the other layers. Layering also determines the kinds
of interlayer dependencies that occur. The rules are as follows:

m Layers communicate top to bottom. A layer is dependent only on the layer
directly below it.

m Each layer is unaware of any other layers except for the layer just below it.

Different applications group concerns differently, so they define different layers.
A typical, proven, high-level application architecture uses three layers, one each
for presentation, business logic, and persistence, as shown in figure 1.4.

Let’s take a closer look at the layers and elements in the diagram:

m Presentation layer—The user interface logic is topmost. Code responsible for
the presentation and control of page and screen navigation forms the pre-
sentation layer.

m Business layer—The exact form of the next layer varies widely between appli-
cations. It’s generally agreed, however, that this business layer is responsible
for implementing any business rules or system requirements that would be
understood by users as part of the problem domain. In some systems, this
layer has its own internal representation of the business domain entities. In
others, it reuses the model defined by the persistence layer. We revisit this
issue in chapter 3.

Presentation Layer —
l Utility
BUSi L and
usiness Layer E— Helper
l Classes
Persistence Layer —

Figure 1.4
Database A persistence layer is the basis in a
layered architecture.

18

1.3.2

CHAPTER 1
Understanding object/relational persistence

m Persistence layer—The persistence layer is a group of classes and components
responsible for data storage to, and retrieval from, one or more data stores.
This layer necessarily includes a model of the business domain entities
(even if it’s only a metadata model).

m Database—The database exists outside the Java application. It’s the actual,
persistent representation of the system state. If an SQL database is used, the
database includes the relational schema and possibly stored procedures.

m Helper/utility classes—Every application has a set of infrastructural helper or
utility classes that are used in every layer of the application (for example,
Exception classes for error handling). These infrastructural elements don’t
form a layer, since they don’t obey the rules for interlayer dependency in a
layered architecture.

Let’s now take a brief look at the various ways the persistence layer can be imple-
mented by Java applications. Don’t worry—we’ll get to ORM and Hibernate soon.
There is much to be learned by looking at other approaches.

Hand-coding a persistence layer with SQL/JDBC

The most common approach to Java persistence is for application programmers
to work directly with SQL and JDBC. After all, developers are familiar with rela-
tional database management systems, understand SQL, and know how to work
with tables and foreign keys. Moreover, they can always use the well-known and
widely used DAO design pattern to hide complex JDBC code and nonportable SQL
from the business logic.

The DAO pattern is a good one—so good that we recommend its use even with
ORM (see chapter 8). However, the work involved in manually coding persistence
for each domain class is considerable, particularly when multiple SQL dialects are
supported. This work usually ends up consuming a large portion of the develop-
ment effort. Furthermore, when requirements change, a hand-coded solution
always requires more attention and maintenance effort.

So why not implement a simple ORM framework to fit the specific requirements
of your project? The result of such an effort could even be reused in future
projects. Many developers have taken this approach; numerous homegrown
object/relational persistence layers are in production systems today. However, we
don’t recommend this approach. Excellent solutions already exist, not only the
(mostly expensive) tools sold by commercial vendors but also open source projects
with free licenses. We’re certain you’ll be able to find a solution that meets your

133

Persistence layers and alternatives 19

requirements, both business and technical. It’s likely that such a solution will do a
great deal more, and do it better, than a solution you could build in a limited time.

Development of a reasonably full-featured ORM may take many developers
months. For example, Hibernate is 43,000 lines of code (some of which is much
more difficult than typical application code), along with 12,000 lines of unit test
code. This might be more than your application. A great many details can easily be
overlooked—as both the authors know from experience! Even if an existing tool
doesn’t fully implement two or three of your more exotic requirements, it’s still
probably not worth creating your own. Any ORM will handle the tedious common
cases—the ones that really kill productivity. It’s okay that you might need to hand-
code certain special cases; few applications are composed primarily of special cases.

Don’t fall for the “Not Invented Here” syndrome and start your own object/rela-
tional mapping effort just to avoid the learning curve associated with third-party
software. Even if you decide that all this ORM stuff is crazy, and you want to work
as close to the SQL database as possible, other persistence frameworks exist that
don’t implement full ORM. For example, the iBATIS database layer is an open
source persistence layer that handles some of the more tedious JDBC code while
letting developers handcraft the SQL.

Using serialization

Java has a built-in persistence mechanism: Serialization provides the ability to write
a graph of objects (the state of the application) to a byte-stream, which may then
be persisted to a file or database. Serialization is also used by Java’s Remote
Method Invocation (RMI) to achieve pass-by value semantics for complex objects.
Another usage of serialization is to replicate application state across nodes in a
cluster of machines.

Why not use serialization for the persistence layer? Unfortunately, a serialized
graph of interconnected objects can only be accessed as a whole; it’s impossible to
retrieve any data from the stream without deserializing the entire stream. Thus, the
resulting byte-stream must be considered unsuitable for arbitrary search or aggre-
gation. It isn’t even possible to access or update a single object or subgraph inde-
pendently. Loading and overwriting an entire object graph in each transaction is
no option for systems designed to support high concurrency.

Clearly, given current technology, serialization is inadequate as a persistence
mechanism for high concurrency web and enterprise applications. It has a partic-
ular niche as a suitable persistence mechanism for desktop applications.

20

CHAPTER 1
Understanding object/relational persistence

1.3.4 Considering EJB entity beans

In recent years, Enterprise JavaBeans (EJBs) have been a recommended way of
persisting data. If you’ve been working in the field of Java enterprise applications,
you’ve probably worked with EJBs and entity beans in particular. If you haven't,
don’t worry—entity beans are rapidly declining in popularity. (Many of the devel-
oper concerns will be addressed in the new EJB 3.0 specification, however.)

Entity beans (in the current EJB 2.1 specification) are interesting because, in
contrast to the other solutions mentioned here, they were created entirely by
committee. The other solutions (the DAO pattern, serialization, and ORM) were
distilled from many years of experience; they represent approaches that have
stood the test of time. Unsurprisingly, perhaps, EJB 2.1 entity beans have been a
disaster in practice. Design flaws in the EJB specification prevent bean-managed
persistence (BMP) entity beans from performing efficiently. A marginally more
acceptable solution is container-managed persistence (CMP), at least since some glar-
ing deficiencies of the EJB 1.1 specification were rectified.

Nevertheless, CMP doesn’t represent a solution to the object/relational mis-
match. Here are six reasons why:

m CMP beans are defined in one-to-one correspondence to the tables of the
relational model. Thus, they’re too coarse grained; they may not take full
advantage of Java’s rich typing. In a sense, CMP forces your domain model
into first normal form.

= On the other hand, CMP beans are also too fine grained to realize the stated
goal of EJB: the definition of reusable software components. A reusable
component should be a very coarse-grained object, with an external inter-
face that is stable in the face of small changes to the database schema. (Yes,
we really did just claim that CMP entity beans are both too fine grained and
too coarse grained!)

= Although EJBs may take advantage of implementation inheritance, entity
beans don’t support polymorphic associations and queries, one of the defin-
ing features of “true” ORM.

m Entity beans, despite the stated goal of the EJB specification, aren’t portable
in practice. Capabilities of CMP engines vary widely between vendors, and
the mapping metadata is highly vendor-specific. Some projects have chosen
Hibernate for the simple reason that Hibernate applications are much
more portable between application servers.

135

Persistence layers and alternatives 21

m Entity beans aren’t serializable. We find that we must define additional data
transfer objects (DTOs, also called value objects) when we need to transport
data to a remote client tier. The use of fine-grained method calls from the
client to a remote entity bean instance is not scalable; DTOs provide a way of
batching remote data access. The DTO pattern results in the growth of par-
allel class hierarchies, where each entity of the domain model is repre-
sented as both an entity bean and a DTO.

m EJB is an intrusive model; it mandates an unnatural Java style and makes
reuse of code outside a specific container extremely difficult. This is a huge
barrier to unit test driven development (TDD). It even causes problems in
applications that require batch processing or other offline functions.

We won’t spend more time discussing the pros and cons of EJB 2.1 entity beans.
After looking at their persistence capabilities, we’ve come to the conclusion that
they aren’t suitable for a full object mapping. We’ll see what the new EJB 3.0 spec-
ification can improve. Let’s turn to another object persistence solution that
deserves some attention.

Object-oriented database systems

Since we work with objects in Java, it would be ideal if there were a way to store
those objects in a database without having to bend and twist the object model at
all. In the mid-1990s, new object-oriented database systems gained attention.

An object-oriented database management system (OODBMS) is more like an
extension to the application environment than an external data store. An OODBMS
usually features a multitiered implementation, with the backend data store, object
cache, and client application coupled tightly together and interacting via a propri-
etary network protocol.

Object-oriented database development begins with the top-down definition of
host language bindings that add persistence capabilities to the programming lan-
guage. Hence, object databases offer seamless integration into the object-oriented
application environment. This is different from the model used by today’s rela-
tional databases, where interaction with the database occurs via an intermediate
language (SQL).

Analogously to ANSI SQL, the standard query interface for relational databases,
there is a standard for object database products. The Object Data Management
Group (ODMG) specification defines an API, a query language, a metadata lan-
guage, and host language bindings for C++, SmallTalk, and Java. Most object-

22

1.3.6

14

CHAPTER 1
Understanding object/relational persistence

oriented database systems provide some level of support for the ODMG standard,
but to the best of our knowledge, there is no complete implementation.
Furthermore, a number of years after its release, and even in version 3.0, the spec-
ification feels immature and lacks a number of useful features, especially in a Java-
based environment. The ODMG is also no longer active. More recently, the Java
Data Obijects (JDO) specification (published in April 2002) opened up new possi-
bilities. JDO was driven by members of the object-oriented database community
and is now being adopted by object-oriented database products as the primary API,
often in addition to the existing ODMG support. It remains to be seen if this new
effort will see object-oriented databases penetrate beyond CAD/CAM (computer-
aided design/modeling), scientific computing, and other niche markets.

We won’t bother looking too closely into why object-oriented database technol-
ogy hasn’t been more popular—we’ll simply observe that object databases haven’t
been widely adopted and that it doesn’t appear likely that they will be in the near
future. We’re confident that the overwhelming majority of developers will have far
more opportunity to work with relational technology, given the current political
realities (predefined deployment environments).

Other options

Of course, there are other kinds of persistence layers. XML persistence is a varia-
tion on the serialization theme; this approach addresses some of the limitations
of byte-stream serialization by allowing tools to access the data structure easily
(but is itself subject to an object/hierarchical impedance mismatch). Further-
more, there is no additional benefit from the XML, because it’s just another text
file format. You can use stored procedures (even write them in Java using SQLJ)
and move the problem into the database tier. We’re sure there are plenty of
other examples, but none of them are likely to become popular in the immedi-
ate future.

Political constraints (long-term investments in SQL databases) and the require-
ment for access to valuable legacy data call for a different approach. ORM may be
the most practical solution to our problems.

Object/relational mapping

Now that we’ve looked at the alternative techniques for object persistence, it’s
time to introduce the solution we feel is the best, and the one we use with Hiber-
nate: ORM. Despite its long history (the first research papers were published in
the late 1980s), the terms for ORM used by developers vary. Some call it object

141

Object/relational mapping 23

relational mapping, others prefer the simple object mapping. We exclusively use the
term object/relational mapping and its acronym, ORM. The slash stresses the mis-
match problem that occurs when the two worlds collide.

In this section, we first look at what ORM is. Then we enumerate the problems
that a good ORM solution needs to solve. Finally, we discuss the general benefits
that ORM provides and why we recommend this solution.

What is ORM?

In a nutshell, object/relational mapping is the automated (and transparent) per-
sistence of objects in a Java application to the tables in a relational database,
using metadata that describes the mapping between the objects and the database.
ORM, in essence, works by (reversibly) transforming data from one representa-
tion to another.

This implies certain performance penalties. However, if ORM is implemented as
middleware, there are many opportunities for optimization that wouldn’t exist for
a hand-coded persistence layer. A further overhead (at development time) is the
provision and management of metadata that governs the transformation. But
again, the cost is less than equivalent costs involved in maintaining a hand-coded
solution. And even ODMG-compliant object databases require significant class-
level metadata.

FAQ Isn’t ORM a Visio plugin? The acronym ORM can also mean object role mod-
eling, and this term was invented before object/relational mapping
became relevant. It describes a method for information analysis, used in
database modeling, and is primarily supported by Microsoft Visio, a
graphical modeling tool. Database specialists use it as a replacement or as
an addition to the more popular entity-relationship modeling. However, if
you talk to Java developers about ORM, it’s usually in the context of
object/relational mapping.

An ORM solution consists of the following four pieces:

= An API for performing basic CRUD operations on objects of persistent
classes

m A language or API for specifying queries that refer to classes and properties
of classes

m A facility for specifying mapping metadata

m A technique for the ORM implementation to interact with transactional

objects to perform dirty checking, lazy association fetching, and other opti-
mization functions

24

CHAPTER 1
Understanding object/relational persistence

We’re using the term ORM to include any persistence layer where SQL is autoge-
nerated from a metadata-based description. We aren’t including persistence layers
where the object/relational mapping problem is solved manually by developers
hand-coding SQL and using JDBC. With ORM, the application interacts with the
ORM APIs and the domain model classes and is abstracted from the underlying
SQL/JDBC. Depending on the features or the particular implementation, the
ORM runtime may also take on responsibility for issues such as optimistic locking
and caching, relieving the application of these concerns entirely.

Let’s look at the various ways ORM can be implemented. Mark Fussel
[Fussel 1997], a researcher in the field of ORM, defined the following four levels of
ORM quality.

Pure relational

The whole application, including the user interface, is designed around the rela-
tional model and SQL-based relational operations. This approach, despite its defi-
ciencies for large systems, can be an excellent solution for simple applications
where a low level of code reuse is tolerable. Direct SQL can be fine-tuned in every
aspect, but the drawbacks, such as lack of portability and maintainability, are sig-
nificant, especially in the long run. Applications in this category often make heavy
use of stored procedures, shifting some of the work out of the business layer and
into the database.

Light object mapping

Entities are represented as classes that are mapped manually to the relational
tables. Hand-coded SQL/JDBC is hidden from the business logic using well-
known design patterns. This approach is extremely widespread and is successful
for applications with a small number of entities, or applications with generic,
metadata-driven data models. Stored procedures might have a place in this kind
of application.

Medium object mapping

The application is designed around an object model. SQL is generated at build
time using a code generation tool, or at runtime by framework code. Associations
between objects are supported by the persistence mechanism, and queries may be
specified using an object-oriented expression language. Objects are cached by the
persistence layer. A great many ORM products and homegrown persistence layers
support at least this level of functionality. It’s well suited to medium-sized applica-
tions with some complex transactions, particularly when portability between

142

Object/relational mapping 25

different database products is important. These applications usually don’t use
stored procedures.

Full object mapping

Full object mapping supports sophisticated object modeling: composition, inher-
itance, polymorphism, and “persistence by reachability.” The persistence layer
implements transparent persistence; persistent classes do not inherit any special
base class or have to implement a special interface. Efficient fetching strategies
(lazy and eager fetching) and caching strategies are implemented transparently to
the application. This level of functionality can hardly be achieved by a homegrown
persistence layer—it’s equivalent to months or years of development time. A num-
ber of commercial and open source Java ORM tools have achieved this level of
quality. This level meets the definition of ORM we’re using in this book. Let’s look
at the problems we expect to be solved by a tool that achieves full object mapping.

Generic ORM problems

The following list of issues, which we’ll call the O/R mapping problems, are the fun-
damental problems solved by a full object/relational mapping tool in a Java envi-
ronment. Particular ORM tools may provide extra functionality (for example,
aggressive caching), but this is a reasonably exhaustive list of the conceptual issues
that are specific to object/relational mapping:

1 What do persistent classes look like? Are they fine-grained JavaBeans? Or are
they instances of some (coarser granularity) component model like EJB?
How transparent is the persistence tool? Do we have to adopt a programming
model and conventions for classes of the business domain?

2 How is mapping metadata defined? Since the object/relational transforma-
tion is governed entirely by metadata, the format and definition of this
metadata is a centrally important issue. Should an ORM tool provide a GUI
to manipulate the metadata graphically? Or are there better approaches
to metadata definition?

3 How should we map class inheritance hierarchies? There are several standard
strategies. What about polymorphic associations, abstract classes, and
interfaces?

4 How do object identity and equality relate to database (primary key)
identity? How do we map instances of particular classes to particular
table rows?

26

143

CHAPTER 1
Understanding object/relational persistence

5 How does the persistence logic interact at runtime with the objects of the business
domain? This is a problem of generic programming, and there are a
number of solutions including source generation, runtime reflection,
runtime bytecode generation, and buildtime bytecode enhancement. The
solution to this problem might affect your build process (but, preferably,
shouldn’t otherwise affect you as a user).

6 What is the lifecyle of a persistent object? Does the lifecycle of some objects
depend upon the lifecycle of other associated objects? How do we trans-
late the lifecyle of an object to the lifecycle of a database row?

7 What facilities are provided for sorting, searching, and aggregating? The
application could do some of these things in memory. But efficient use
of relational technology requires that this work sometimes be per-
formed by the database.

g8 How do we efficiently retrieve data with associations? Efficient access to rela-
tional data is usually accomplished via table joins. Object-oriented appli-
cations usually access data by navigating an object graph. Two data access
patterns should be avoided when possible: the n+1 selects problem, and its
complement, the Cartesian product problem (fetching too much data in a
single select).

In addition, two issues are common to any data-access technology. They also
impose fundamental constraints on the design and architecture of an ORM:

= Transactions and concurrency
= Cache management (and concurrency)

As you can see, a full object-mapping tool needs to address quite a long list of
issues. We discuss the way Hibernate manages these problems and data-access
issues in chapters 3, 4, and 5, and we broaden the subject later in the book.

By now, you should be starting to see the value of ORM. In the next section, we
look at some of the other benefits you gain when you use an ORM solution.

Why ORM?

An ORM implementation is a complex beast—Iless complex than an application
server, but more complex than a web application framework like Struts or Tapes-
try. Why should we introduce another new complex infrastructural element into
our system? Will it be worth it?

Object/relational mapping 27

It will take us most of this book to provide a complete answer to those questions.
For the impatient, this section provides a quick summary of the most compelling
benefits. But first, let’s quickly dispose of a non-benefit.

A supposed advantage of ORM is that it “shields” developers from “messy” SQL.
This view holds that object-oriented developers can’t be expected to understand
SQL or relational databases well and that they find SQL somehow offensive. On
the contrary, we believe that Java developers must have a sufficient level of famil-
iarity with—and appreciation of—relational modeling and SQL in order to work
with ORM. ORM is an advanced technique to be used by developers who have
already done it the hard way. To use Hibernate effectively, you must be able to
view and interpret the SQL statements it issues and understand the implications
for performance.

Let’s look at some of the benefits of ORM and Hibernate.

Productivity

Persistence-related code can be perhaps the most tedious code in a Java applica-
tion. Hibernate eliminates much of the grunt work (more than you’d expect) and
lets you concentrate on the business problem. No matter which application devel-
opment strategy you prefer—top-down, starting with a domain model; or bottom-
up, starting with an existing database schema—Hibernate used together with the
appropriate tools will significantly reduce development time.

Maintainability
Fewer lines of code (LOC) makes the system more understandable since it empha-
sizes business logic rather than plumbing. Most important, a system with less code
is easier to refactor. Automated object/relational persistence substantially reduces
LOC. Of course, counting lines of code is a debatable way of measuring applica-
tion complexity.

However, there are other reasons that a Hibernate application is more maintain-
able. In systems with hand-coded persistence, an inevitable tension exists between
the relational representation and the object model implementing the domain.
Changes to one almost always involve changes to the other. And often the design
of one representation is compromised to accommodate the existence of the other.
(What almost always happens in practice is that the object model of the domain is
compromised.) ORM provides a buffer between the two models, allowing more ele-
gant use of object orientation on the Java side, and insulating each model from
minor changes to the other.

28

CHAPTER 1
Understanding object/relational persistence

Performance

A common claim is that hand-coded persistence can always be at least as fast, and
can often be faster, than automated persistence. This is true in the same sense that
it’s true that assembly code can always be at least as fast as Java code, or a hand-
written parser can always be at least as fast as a parser generated by YACC or
ANTLR—in other words, it’s beside the point. The unspoken implication of the
claim is that hand-coded persistence will perform at least as well in an actual appli-
cation. But this implication will be true only if the effort required to implement
at-least-as-fast hand-coded persistence is similar to the amount of effort involved
in utilizing an automated solution. The really interesting question is, what hap-
pens when we consider time and budget constraints?

Given a persistence task, many optimizations are possible. Some (such as
guery hints) are much easier to achieve with hand-coded SQL/JDBC. Most opti-
mizations, however, are much easier to achieve with automated ORM. In a
project with time constraints, hand-coded persistence usually allows you to make
some optimizations, some of the time. Hibernate allows many more optimiza-
tions to be used all the time. Furthermore, automated persistence improves
developer productivity so much that you can spend more time hand-optimizing
the few remaining bottlenecks.

Finally, the people who implemented your ORM software probably had much
more time to investigate performance optimizations than you have. Did you
know, for instance, that pooling preparedstatement instances results in a signifi-
cant performance increase for the DB2 JDBC driver but breaks the InterBase JDBC
driver? Did you realize that updating only the changed columns of a table can be
significantly faster for some databases but potentially slower for others? In your
handcrafted solution, how easy is it to experiment with the impact of these vari-
ous strategies?

Vendor independence

An ORM abstracts your application away from the underlying SQL database and
SQL dialect. If the tool supports a number of different databases (most do), then
this confers a certain level of portability on your application. You shouldn’t neces-
sarily expect write once/run anywhere, since the capabilities of databases differ
and achieving full portability would require sacrificing some of the strength of the
more powerful platforms. Nevertheless, it’s usually much easier to develop a cross-
platform application using ORM. Even if you don’t require cross-platform opera-
tion, an ORM can still help mitigate some of the risks associated with vendor lock-

15

Summary 29

in. In addition, database independence helps in development scenarios where
developers use a lightweight local database but deploy for production on a differ-
ent database.

Summary

In this chapter, we’ve discussed the concept of object persistence and the impor-
tance of ORM as an implementation technique. Object persistence means that
individual objects can outlive the application process; they can be saved to a data
store and be re-created at a later point in time. The object/relational mismatch
comes into play when the data store is an SQL-based relational database manage-
ment system. For instance, a graph of objects can’t simply be saved to a database
table; it must be disassembled and persisted to columns of portable SQL data
types. A good solution for this problem is ORM, which is especially helpful if we
consider richly typed Java domain models.

A domain model represents the business entities used in a Java application. In a
layered system architecture, the domain model is used to execute business logic in
the business layer (in Java, not in the database). This business layer communicates
with the persistence layer beneath in order to load and store the persistent objects
of the domain model. ORM is the middleware in the persistence layer that manages
the persistence.

ORM isn’t asilver bullet for all persistence tasks; its job is to relieve the developer
of 95 percent of object persistence work, such as writing complex SQL statements
with many table joins and copying values from JDBC result sets to objects or graphs
of objects. A full-featured ORM middleware might provide database portability, cer-
tain optimization techniques like caching, and other viable functions that aren’t
easy to hand-code in a limited time with SQL and JDBC.

It’s likely that a better solution than ORM will exist some day. We (and many oth-
ers) may have to rethink everything we know about SQL, persistence API standards,
and application integration. The evolution of today’s systems into true relational
database systems with seamless object-oriented integration remains pure specula-
tion. But we can’t wait, and there is no sign that any of these issues will improve
soon (a multibillion-dollar industry isn’t very agile). ORM is the best solution
currently available, and it’s a timesaver for developers facing the object/relational
mismatch every day.

Introducing and
Integrating Hibernate

This chapter covers

Hibernate in action with “Hello World”
The Hibernate core programming interfaces

Integration with managed
and non-managed environments

Advanced configuration options

30

21

“Hello World” with Hibernate 31

It’s good to understand the need for object/relational mapping in Java applica-
tions, but you’re probably eager to see Hibernate in action. We’ll start by showing
you a simple example that demonstrates some of its power.

As you’re probably aware, it’s traditional for a programming book to start with
a “Hello World” example. In this chapter, we follow that tradition by introducing
Hibernate with a relatively simple “Hello World” program. However, simply print-
ing a message to a console window won’t be enough to really demonstrate Hiber-
nate. Instead, our program will store newly created objects in the database, update
them, and perform queries to retrieve them from the database.

This chapter will form the basis for the subsequent chapters. In addition to the
canonical “Hello World” example, we introduce the core Hibernate APIs and
explain how to configure Hibernate in various runtime environments, such as J2EE
application servers and stand-alone applications.

“Hello World” with Hibernate

Hibernate applications define persistent classes that are “mapped” to database tables.
Our “Hello World” example consists of one class and one mapping file. Let’s see
what a simple persistent class looks like, how the mapping is specified, and some of
the things we can do with instances of the persistent class using Hibernate.

The objective of our sample application is to store messages in a database and
to retrieve them for display. The application has a simple persistent class, Message,
which represents these printable messages. Our Message class is shown in listing 2.1.

package hello;

public class Message { |denﬁﬁ9f
private Long id; attribute
private String text; <+—+—— Message text

pr%vate Message nextMessage; Reference to
prlv§te Message () F} another
public Message (String text) { Mes&me
this.text = text;
}
public Long getId() {
return id;
}
private void setId(Long id) ({
this.id = id;
}
public String getText () {
return text;

32

CHAPTER 2
Introducing and integrating Hibernate

}

public void setText (String text) {
this.text = text;

}

public Message getNextMessage() {
return nextMessage;

}

public void setNextMessage (Message nextMessage) {
this.nextMessage = nextMessage;

}

Our Message class has three attributes: the identifier attribute, the text of the mes-
sage, and a reference to another message. The identifier attribute allows the appli-
cation to access the database identity—the primary key value—of a persistent
object. If two instances of Message have the same identifier value, they represent
the same row in the database. We’ve chosen rong for the type of our identifier
attribute, but this isn’t a requirement. Hibernate allows virtually anything for the
identifier type, as you’ll see later.

You may have noticed that all attributes of the Message class have JavaBean-style
property accessor methods. The class also has a constructor with no parameters.
The persistent classes we use in our examples will almost always look something
like this.

Instances of the Message class may be managed (made persistent) by Hibernate,
but they don’t have to be. Since the Message Object doesn’t implement any
Hibernate-specific classes or interfaces, we can use it like any other Java class:

Message message = new Message("Hello World") ;

System.out.println(message.getText ());
This code fragment does exactly what we’ve come to expect from “Hello World”
applications: It prints "Hello world" to the console. It might look like we’re trying
to be cute here; in fact, we’re demonstrating an important feature that distin-
guishes Hibernate from some other persistence solutions, such as EJB entity
beans. Our persistent class can be used in any execution context at all—no special
container is needed. Of course, you came here to see Hibernate itself, so let’s save
a new Message to the database:

Session session = getSessionFactory () .openSession() ;

Transaction tx = session.beginTransaction() ;

Message message = new Message("Hello World") ;
session.save (message) ;

“Hello World” with Hibernate 33

tx.commit () ;

session.close();
This code calls the Hibernate session and Transaction interfaces. (We’ll get to
that getsessionFactory () call soon.) It results in the execution of something sim-
ilar to the following SQL:

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)

values (1, 'Hello World', null)

Hold on—the MESSAGE_1D column is being initialized to a strange value. We didn’t
set the ia property of message anywhere, so we would expect it to be null, right?
Actually, the id property is special: It’s an identifier property—it holds a generated
unique value. (We’ll discuss how the value is generated later.) The value is
assigned to the Message instance by Hibernate when save () is called.

For this example, we assume that the MEssaGes table already exists. In chapter 9,
we’ll show you how to use Hibernate to automatically create the tables your appli-
cation needs, using just the information in the mapping files. (There’s some more
SQL you won’t need to write by hand!) Of course, we want our “Hello World” pro-
gram to print the message to the console. Now that we have a message in the data-
base, we’re ready to demonstrate this. The next example retrieves all messages
from the database, in alphabetical order, and prints them:

Session newSession = getSessionFactory () .openSession() ;
Transaction newTransaction = newSession.beginTransaction();
List messages =
newSession.find("from Message as m order by m.text asc");
System.out.println(messages.size() + " message(s) found:");
for (Iterator iter = messages.iterator(); iter.hasNext();) {
Message message = (Message) iter.next();
System.out.println(message.getText ());
}
newTransaction.commit () ;
newSession.close() ;

The literal string "from Message as m order by m.text asc" IS a Hibernate query,

expressed in Hibernate’s own object-oriented Hibernate Query Language (HQL).

This query is internally translated into the following SQL when find () is called:
select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID

from MESSAGES m
order by m.MESSAGE_TEXT asc

The code fragment prints

1 message(s) found:
Hello World

34

CHAPTER 2
Introducing and integrating Hibernate

If you’ve never used an ORM tool like Hibernate before, you were probably
expecting to see the SQL statements somewhere in the code or metadata. They
aren’t there. All SQL is generated at runtime (actually at startup, for all reusable
SQL statements).

To allow this magic to occur, Hibernate needs more information about how the
Message class should be made persistent. This information is usually provided in an
XML mapping document. The mapping document defines, among other things, how
properties of the Message class map to columns of the MESSAGES table. Let’s look at
the mapping document in listing 2.2.

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping> Note that Hibernate 2.0

<class and Hibernate 2.1
name="hello.Message" have the same DTD!
table="MESSAGES" >
<id

name="id"

column="MESSAGE_ID">
<generator class="increment"/>
</id>
<property
name="text"
column="MESSAGE_TEXT" />
<many-to-one
name="nextMessage"
cascade="all"
column="NEXT_MESSAGE_ID"/>
</class>
</hibernate-mapping>

The mapping document tells Hibernate that the Message class is to be persisted to
the MESSAGES table, that the identifier property maps to a column named
MESSAGE_ID, that the text property maps to a column named MESSAGE_TEXT, and
that the property named nextMessage is an association with many-to-one multiplicity
that maps to a column named NExT_MESSAGE_ID. (Don’t worry about the other
details for now.)

As you can see, the XML document isn’t difficult to understand. You can easily
write and maintain it by hand. In chapter 3, we discuss a way of generating the

“Hello World” with Hibernate 35

XML file from comments embedded in the source code. Whichever method you
choose, Hibernate has enough information to completely generate all the SQL
statements that would be needed to insert, update, delete, and retrieve instances
of the Message class. You no longer need to write these SQL statements by hand.

NOTE

Many Java developers have complained of the “metadata hell” that
accompanies J2EE development. Some have suggested a movement away
from XML metadata, back to plain Java code. Although we applaud this
suggestion for some problems, ORM represents a case where text-based
metadata really is necessary. Hibernate has sensible defaults that mini-
mize typing and a mature document type definition that can be used for
auto-completion or validation in editors. You can even automatically gen-
erate metadata with various tools.

Now, let’s change our first message and, while we’re at it, create a new message
associated with the first, as shown in listing 2.3.

Session session = getSessionFactory () .openSession() ;
Transaction tx = session.beginTransaction() ;

// 1 is
Message

message.
Message
message.

the generated id of the first message
message =

(Message) session.load(Message.class, new Long(1l));

setText ("Greetings Earthling");
nextMessage = new Message("Take me to your leader (please)");
setNextMessage (nextMessage) ;

tx.commit () ;
session.close();

This code calls three SQL statements inside the same transaction:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
where m.MESSAGE_ID = 1

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (2, 'Take me to your leader (please)', null)

update MESSAGES

set MESSAGE_TEXT = 'Greetings Earthling', NEXT MESSAGE_ID = 2

where MESSAGE_ID = 1
Notice how Hibernate detected the modification to the text and nextMessage
properties of the first message and automatically updated the database. We’ve
taken advantage of a Hibernate feature called automatic dirty checking: This feature

36

2.2

CHAPTER 2
Introducing and integrating Hibernate

saves us the effort of explicitly asking Hibernate to update the database when we
modify the state of an object inside a transaction. Similarly, you can see that the
new message was made persistent when a reference was created from the first mes-
sage. This feature is called cascading save: It saves us the effort of explicitly making
the new object persistent by calling save (), as long as it’s reachable by an already-
persistent instance. Also notice that the ordering of the SQL statements isn’t the
same as the order in which we set property values. Hibernate uses a sophisticated
algorithm to determine an efficient ordering that avoids database foreign key con-
straint violations but is still sufficiently predictable to the user. This feature is
called transactional write-behind.

If we run “Hello World” again, it prints

2 message(s) found:

Greetings Earthling

Take me to your leader (please)
This is as far as we’ll take the “Hello World” application. Now that we finally have
some code under our belt, we’ll take a step back and present an overview of
Hibernate’s main APIs.

Understanding the architecture

The programming interfaces are the first thing you have to learn about Hiber-
nate in order to use it in the persistence layer of your application. A major objec-
tive of API design is to keep the interfaces between software components as
narrow as possible. In practice, however, ORM APIs aren’t especially small. Don’t
worry, though; you don’t have to understand all the Hibernate interfaces at once.
Figure 2.1 illustrates the roles of the most important Hibernate interfaces in the
business and persistence layers. We show the business layer above the persistence
layer, since the business layer acts as a client of the persistence layer in a tradi-
tionally layered application. Note that some simple applications might not
cleanly separate business logic from persistence logic; that’s okay—it merely sim-
plifies the diagram.

The Hibernate interfaces shown in figure 2.1 may be approximately classified as
follows:

m Interfaces called by applications to perform basic CRUD and querying oper-
ations. These interfaces are the main point of dependency of application
business/control logic on Hibernate. They include session, Transaction,
and Query.

Understanding the architecture 37

m Interfaces called by application infrastructure code to configure Hibernate,
most importantly the configuration class.

m Callback interfaces that allow the application to react to events occurring
inside Hibernate, such as Interceptor, Lifecycle, and validatable.

m Interfaces that allow extension of Hibernate’s powerful mapping function-
ality, such as UserType, CompositeUserType, and IdentifierGenerator.
These interfaces are implemented by application infrastructure code (if
necessary).

Hibernate makes use of existing Java APIs, including JDBC), Java Transaction API
(JTA, and Java Naming and Directory Interface (JNDI). JDBC provides a rudimen-
tary level of abstraction of functionality common to relational databases, allowing
almost any database with a JDBC driver to be supported by Hibernate. INDI and
JTA allow Hibernate to be integrated with J2EE application servers.

In this section, we don’t cover the detailed semantics of Hibernate API methods,
just the role of each of the primary interfaces. You can find most of these interfaces
in the package net.sf.hibernate. Let’s take a brief look at each interface in turn.

Business Layer

Lifecycle — Persistent
Classes
Validatable —

Interceptor

A

A

UserType

Persistence Layer

| SessionFactory |
Session Transaction Query
| Configuration |
JNDI JDBC JTA

Figure 2.1 High-level overview of the Hlbernate API in a layered architecture

38

CHAPTER 2
Introducing and integrating Hibernate

2.2.1 The core interfaces

The five core interfaces are used in just about every Hibernate application.
Using these interfaces, you can store and retrieve persistent objects and control
transactions.

Session interface

The session interface is the primary interface used by Hibernate applications. An
instance of session is lightweight and is inexpensive to create and destroy. This is
important because your application will need to create and destroy sessions all the
time, perhaps on every request. Hibernate sessions are not threadsafe and should
by design be used by only one thread at a time.

The Hibernate notion of a session is something between connection and transac-
tion. It may be easier to think of a session as a cache or collection of loaded objects
relating to a single unit of work. Hibernate can detect changes to the objects in this
unit of work. We sometimes call the session a persistence manager because it’s also
the interface for persistence-related operations such as storing and retrieving
objects. Note that a Hibernate session has nothing to do with the web-tier attpses-
sion. When we use the word session in this book, we mean the Hibernate session.
We sometimes use user session to refer to the HttpSession object.

We describe the session interface in detail in chapter 4, section 4.2, “The per-
sistence manager.”

SessionFactory interface
The application obtains session instances from a sessionFactory. Compared to
the session interface, this object is much less exciting.

The sessionFactory is certainly not lightweight! It’s intended to be shared
among many application threads. There is typically a single sessionFactory for the
whole application—created during application initialization, for example. How-
ever, if your application accesses multiple databases using Hibernate, you’ll need
a sessionFactory for each database.

The sessionFactory caches generated SQL statements and other mapping
metadata that Hibernate uses at runtime. It also holds cached data that has been
read in one unit of work and may be reused in a future unit of work (only if class
and collection mappings specify that this second-level cache is desirable).

Understanding the architecture 39

Configuration interface
The configuration object is used to configure and bootstrap Hibernate. The
application uses a configuration instance to specify the location of mapping doc-
uments and Hibernate-specific properties and then create the sessionFactory.
Even though the configuration interface plays a relatively small part in the
total scope of a Hibernate application, it’s the first object you’ll meet when you
begin using Hibernate. Section 2.3 covers the problem of configuring Hibernate
in some detail.

Transaction interface
The Transaction interface is an optional API. Hibernate applications may choose
not to use this interface, instead managing transactions in their own infrastruc-
ture code. A Transaction abstracts application code from the underlying transac-
tion implementation—which might be a JDBC transaction, a JTA UserTransaction,
or even a Common Object Request Broker Architecture (CORBA) transaction—
allowing the application to control transaction boundaries via a consistent API.
This helps to keep Hibernate applications portable between different kinds of
execution environments and containers.

We use the Hibernate Transaction API throughout this book. Transactions and
the Transaction interface are explained in chapter 5.

Query and Criteria interfaces

The query interface allows you to perform queries against the database and con-
trol how the query is executed. Queries are written in HQL or in the native SQL
dialect of your database. A guery instance is used to bind query parameters, limit
the number of results returned by the query, and finally to execute the query.

The criteria interface is very similar; it allows you to create and execute object-
oriented criteria queries.

To help make application code less verbose, Hibernate provides some short-
cut methods on the session interface that let you invoke a query in one line of
code. We won’t use these shortcuts in the book; instead, we’ll always use the
Query interface.

A query instance is lightweight and can’t be used outside the session that cre-
ated it. We describe the features of the guery interface in chapter 7.

40

222

223

CHAPTER 2
Introducing and integrating Hibernate

Callback interfaces

Callback interfaces allow the application to receive a notification when something
interesting happens to an object—for example, when an object is loaded, saved,
or deleted. Hibernate applications don’t need to implement these callbacks, but
they’re useful for implementing certain kinds of generic functionality, such as cre-
ating audit records.

The Lifecycle and validatable interfaces allow a persistent object to react to
events relating to its own persistence lifecycle. The persistence lifecycle is encom-
passed by an object’s CRUD operations. The Hibernate team was heavily influ-
enced by other ORM solutions that have similar callback interfaces. Later, they
realized that having the persistent classes implement Hibernate-specific interfaces
probably isn’t a good idea, because doing so pollutes our persistent classes with
nonportable code. Since these approaches are no longer favored, we don’t discuss
them in this book.

The Interceptor interface was introduced to allow the application to process
callbacks without forcing the persistent classes to implement Hibernate-specific
APIs. Implementations of the Interceptor interface are passed to the persistent
instances as parameters. We’ll discuss an example in chapter 8.

Types

A fundamental and very powerful element of the architecture is Hibernate’s
notion of a Type. A Hibernate Type object maps a Java type to a database column
type (actually, the type may span multiple columns). All persistent properties of
persistent classes, including associations, have a corresponding Hibernate type.
This design makes Hibernate extremely flexible and extensible.

There is a rich range of built-in types, covering all Java primitives and many JDK
classes, including types for java.util.Currency, java.util.Calendar, byte[], and
java.lo.Serializable.

Even better, Hibernate supports user-defined custom types. The interfaces
UserType and CompositeUserType are provided to allow you to add your own types.
You can use this feature to allow commonly used application classes such as
Address, Name, OF MonetaryAmount t0 be handled conveniently and elegantly. Cus-
tom types are considered a central feature of Hibernate, and you’re encouraged to
put them to new and creative uses!

We explain Hibernate types and user-defined types in chapter 6, section 6.1,
“Understanding the Hibernate type system.”

224

2.3

Basic configuration 41

Extension interfaces

Much of the functionality that Hibernate provides is configurable, allowing you to
choose between certain built-in strategies. When the built-in strategies are insuffi-
cient, Hibernate will usually let you plug in your own custom implementation by
implementing an interface. Extension points include:

m Primary key generation (IdentifierGenerator interface)

m SQL dialect support (Dialect abstract class)

m Caching strategies (Cache and cacheProvider interfaces)

= JDBC connection management (ConnectionProvider interface)

m Transaction management (TransactionFactory, Transaction, and Transac-
tionManagerLookup interfaces)

m ORM strategies (ClassPersister interface hierarchy)

m Property access strategies (PropertyAccessor interface)

m Proxy creation (pProxyFactory interface)
Hibernate ships with at least one implementation of each of the listed interfaces,
so you don’t usually need to start from scratch if you wish to extend the built-in
functionality. The source code is available for you to use as an example for your
own implementation.

By now you can see that before we can start writing any code that uses Hibernate,
we must answer this question: How do we get a Session to work with?

Basic configuration

We’ve looked at an example application and examined Hibernate’s core inter-
faces. To use Hibernate in an application, you need to know how to configure it.
Hibernate can be configured to run in almost any Java application and develop-
ment environment. Generally, Hibernate is used in two- and three-tiered client/
server applications, with Hibernate deployed only on the server. The client appli-
cation is usually a web browser, but Swing and SWT client applications aren’t
uncommon. Although we concentrate on multitiered web applications in this
book, our explanations apply equally to other architectures, such as command-
line applications. It’s important to understand the difference in configuring
Hibernate for managed and non-managed environments;

m Managed environment—Pools resources such as database connections and
allows transaction boundaries and security to be specified declaratively (that

42

231

CHAPTER 2
Introducing and integrating Hibernate

is, in metadata). A J2EE application server such as JBoss, BEA WebLogic, or
IBM WebSphere implements the standard (J2EE-specific) managed environ-
ment for Java.

= Non-managed environment—Provides basic concurrency management via
thread pooling. A servlet container like Jetty or Tomcat provides a non-
managed server environment for Java web applications. A stand-alone desk-
top or command-line application is also considered non-managed. Non-
managed environments don’t provide automatic transaction or resource
management or security infrastructure. The application itself manages data-
base connections and demarcates transaction boundaries.

Hibernate attempts to abstract the environment in which it’s deployed. In the case
of anon-managed environment, Hibernate handles transactions and JDBC connec-
tions (or delegates to application code that handles these concerns). In managed
environments, Hibernate integrates with container-managed transactions and
datasources. Hibernate can be configured for deployment in both environments.

In both managed and non-managed environments, the first thing you must do
is start Hibernate. In practice, doing so is very easy: You have to create a Session-
Factory from a configuration.

Creating a SessionFactory

In order to create a sessionFactory, you first create a single instance of configu-
ration during application initialization and use it to set the location of the map-
ping files. Once configured, the configuration instance is used to create the
SessionFactory. After the sessionFactory is created, you can discard the config-
uration class.

The following code starts Hibernate:

Configuration cfg = new Configuration();

cfg.addResource("hello/Message.hbm.xml") ;

cfg.setProperties(System.getProperties());

SessionFactory sessions = cfg.buildSessionFactory () ;
The location of the mapping file, Message.hbm.xm1, is relative to the root of the
application classpath. For example, if the classpath is the current directory, the
Message.hbm.xml file must be in the hello directory. XML mapping files must be
placed in the classpath. In this example, we also use the system properties of the
virtual machine to set all other configuration options (which might have been set
before by application code or as startup options).

Basic configuration 43

METHOD Method chaining is a programming style supported by many Hibernate

CHAINING jnterfaces. This style is more popular in Smalltalk than in Java and is
considered by some people to be less readable and more difficult to
debug than the more accepted Java style. However, it’s very convenient
in most cases.

Most Java developers declare setter or adder methods to be of type
void, meaning they return no value. In Smalltalk, which has no void
type, setter or adder methods usually return the receiving object. This
would allow us to rewrite the previous code example as follows:

SessionFactory sessions = new Configuration/()
.addResource("hello/Message.hbm.xml")
.setProperties(System.getProperties())
.buildSessionFactory () ;

Notice that we didn’t need to declare a local variable for the configura-
tion. We use this style in some code examples; but if you don’t like it, you
don’t need to use it yourself. If you do use this coding style, it’s better to
write each method invocation on a different line. Otherwise, it might be
difficult to step through the code in your debugger.

By convention, Hibernate XML mapping files are named with the .hbm.xm1 exten-
sion. Another convention is to have one mapping file per class, rather than have
all your mappings listed in one file (which is possible but considered bad style).
Our “Hello World” example had only one persistent class, but let’s assume we
have multiple persistent classes, with an XML mapping file for each. Where should
we put these mapping files?

The Hibernate documentation recommends that the mapping file for each per-
sistent class be placed in the same directory as that class. For instance, the mapping
file for the Message class would be placed in the hello directory in a file named
Message.hbm.xml. If we had another persistent class, it would be defined in its own
mapping file. We suggest that you follow this practice. The monolithic metadata
files encouraged by some frameworks, such as the struts-config.xml found in
Struts, are a major contributor to “metadata hell.” You load multiple mapping files
by calling addresource () as often as you have to. Alternatively, if you follow the con-
vention just described, you can use the method addclass (), passing a persistent
class as the parameter:

SessionFactory sessions = new Configuration()

.addClass (org.hibernate.auction.model.Item.class)
.addClass (org.hibernate.auction.model .Category.class)
.addClass (org.hibernate.auction.model.Bid.class)

.setProperties(System.getProperties())
.buildSessionFactory () ;

44

CHAPTER 2
Introducing and integrating Hibernate

The addclass () method assumes that the name of the mapping file ends with the
.hbm.xm1 extension and is deployed along with the mapped class file.

We’ve demonstrated the creation of a single sessionFactory, which is all that
most applications need. If another sessionFactory is needed—if there are multi-
ple databases, for example—you repeat the process. Each sessionFactory is then
available for one database and ready to produce sessions to work with that partic-
ular database and a set of class mappings.

Of course, there is more to configuring Hibernate than just pointing to map-
ping documents. You also need to specify how database connections are to be
obtained, along with various other settings that affect the behavior of Hibernate at
runtime. The multitude of configuration properties may appear overwhelming (a
complete list appears in the Hibernate documentation), but don’t worry; most
define reasonable default values, and only a handful are commonly required.

To specify configuration options, you may use any of the following techniques:

m Pass an instance of java.util.Properties tO Configuration.setProper-
ties().

m Set system properties using java -Dproperty=value.
m Place afile called hibernate.properties in the classpath.
m Include <property> elements in hibernate.cfg.xml in the classpath.

The first and second options are rarely used except for quick testing and proto-
types, but most applications need a fixed configuration file. Both the hibernate.
properties and the hibernate.cfg.xml files provide the same function: to config-
ure Hibernate. Which file you choose to use depends on your syntax preference.
It’s even possible to mix both options and have different settings for development
and deployment, as you’ll see later in this chapter.

A rarely used alternative option is to allow the application to provide a JDBC Con-
nection when it opens a Hibernate session from the sessionfFactory (for exam-
ple, by calling sessions.openSession(myConnection)). Using this option means
that you don’t have to specify any database connection properties. We don’t rec-
ommend this approach for new applications that can be configured to use the envi-
ronment’s database connection infrastructure (for example, a JDBC connection
pool or an application server datasource).

Of all the configuration options, database connection settings are the most
important. They differ in managed and non-managed environments, so we deal
with the two cases separately. Let’s start with non-managed.

Basic configuration 45

2.3.2 Configuration in non-managed environments

In a non-managed environment, such as a servlet container, the application is
responsible for obtaining JDBC connections. Hibernate is part of the application,
so it’s responsible for getting these connections. You tell Hibernate how to get (or
create new) JDBC connections. Generally, it isn’t advisable to create a connection
each time you want to interact with the database. Instead, Java applications should
use a pool of JDBC connections. There are three reasons for using a pool:

= Acquiring a new connection is expensive.
= Maintaining many idle connections is expensive.
m Creating prepared statements is also expensive for some drivers.

Figure 2.2 shows the role of a JIDBC connection pool in a web application runtime
environment. Since this non-managed environment doesn’t implement connec-
tion pooling, the application must implement its own pooling algorithm or rely
upon a third-party library such as the open source C3P0 connection pool. Without
Hibernate, the application code usually calls the connection pool to obtain JDBC
connections and execute SQL statements.

With Hibernate, the picture changes: It acts as a client of the JDBC connection
pool, as shown in figure 2.3. The application code uses the Hibernate session and
guery APIs for persistence operations and only has to manage database transac-
tions, ideally using the Hibernate Transaction API.

Using a connection pool

Hibernate defines a plugin architecture that allows integration with any connec-
tion pool. However, support for C3P0 is built in, so we’ll use that. Hibernate will
set up the configuration pool for you with the given properties. An example of a
hibernate.properties file using C3P0 is shown in listing 2.4.

: Non-Managed Environment :

'/ Application

User-managed
JDBC connections

. m] i Connection

P 1 | Pool

s Database

Figure 2.2 JDBC connection pooling in a non-managed environment

46 CHAPTER 2
Introducing and integrating Hibernate

Hibernate '
] Session E
E ! £ : \\ :
: Transaction i Connection -
] . Pool 3

Database

o
c
@
=

<

Figure 2.3 Hibernate with a connection pool in a non-managed environment

hibernate.connection.driver_class = org.postgresqgl.Driver
hibernate.connection.url = jdbc:postgresgl://localhost/auctiondb
hibernate.connection.username = auctionuser
hibernate.connection.password = secret

hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.c3p0.min_size=5

hibernate.c3p0.max_size=20

hibernate.c3p0.timeout=300

hibernate.c3p0.max_statements=50
hibernate.c3p0.idle_test_period=3000

This code’s lines specify the following information, beginning with the first line:

The name of the Java class implementing the JDBC priver (the driver JAR
file must be placed in the application’s classpath).

A JDBC URL that specifies the host and database name for JDBC connec-
tions.

The database user name.
The database password for the specified user.

A pialect for the database. Despite the ANSI standardization effort, SQL is
implemented differently by various databases vendors. So, you must specify
a Dialect. Hibernate includes built-in support for all popular SQL data-
bases, and new dialects may be defined easily.

The minimum number of JDBC connections that C3P0 will keep ready.

Basic configuration

m The maximum number of connections in the pool. An exception will be
thrown at runtime if this number is exhausted.

m The timeout period (in this case, 5 minutes or 300 seconds) after which an
idle connection will be removed from the pool.

» The maximum number of prepared statements that will be cached. Caching
of prepared statements is essential for best performance with Hibernate.

m The idle time in seconds before a connection is automatically validated.

Specifying properties of the form hibernate.c3p0.* selects C3P0 as Hibernate’s
connection pool (you don’t need any other switch to enable C3P0 support). C3P0
has even more features than we’ve shown in the previous example, so we refer you
to the Hibernate APl documentation. The Javadoc for the class net.sf.hiber-
nate.cfg.Environment documents every Hibernate configuration property,
including all C3P0-related settings and settings for other third-party connection
pools directly supported by Hibernate.

The other supported connection pools are Apache DBCP and Proxool. You
should try each pool in your own environment before deciding between them. The
Hibernate community tends to prefer C3P0 and Proxool.

Hibernate also ships with a default connection pooling mechanism. This con-
nection pool is only suitable for testing and experimenting with Hibernate: You
should not use this built-in pool in production systems. It isn’t designed to scale to
an environment with many concurrent requests, and it lacks the fault tolerance fea-
tures found in specialized connection pools.

Starting Hibernate
How do you start Hibernate with these properties? You declared the properties in
a file named hibernate.properties, SO you need only place this file in the applica-
tion classpath. It will be automatically detected and read when Hibernate is first
initialized when you create a Configuration Object.

Let’s summarize the configuration steps you’ve learned so far (this is a good
time to download and install Hibernate, if you’d like to continue in a non-
managed environment):

1 Download and unpack the JDBC driver for your database, which is usually
available from the database vendor web site. Place the JAR files in the appli-
cation classpath; do the same with hibernate2.jar.

2 Add Hibernate’s dependencies to the classpath; they’re distributed along
with Hibernate in the 1ib/ directory. See also the text file 1ib/README. txt
for a list of required and optional libraries.

48

CHAPTER 2
Introducing and integrating Hibernate

3 Choose a JDBC connection pool supported by Hibernate and configure it
with a properties file. Don’t forget to specify the SQL dialect.

4 Let the configuration know about these properties by placing them in a
hibernate.properties file in the classpath.

5 Create an instance of configuration in your application and load the XML
mapping files using either addresource () OF addClass (). Build a session-
Factory from the configuration by calling buildSessionFactory ().

Unfortunately, you don’t have any mapping files yet. If you like, you can run the
“Hello World” example or skip the rest of this chapter and start learning about
persistent classes and mappings in chapter 3. Or, if you want to know more about
using Hibernate in a managed environment, read on.

2.3.3 Configuration in managed environments

A managed environment handles certain cross-cutting concerns, such as applica-
tion security (authorization and authentication), connection pooling, and trans-
action management. J2EE application servers are typical managed environments.
Although application servers are generally designed to support EJBs, you can still
take advantage of the other managed services provided, even if you don’t use EJB
entity beans.

Hibernate is often used with session or message-driven EJBs, as shown in
figure 2.4. EJBs call the same Hibernate APIs as servlets, JSPs, or stand-alone appli-
cations: session, Transaction, and guery. The Hibernate-related code is fully por-
table between non-managed and managed environments. Hibernate handles the
different connection and transaction strategies transparently.

' Hibernate

L Application % _ { Transaction |
. : Session ' Manager ;
P EJB : . ' - SO A
v] ransaction H
b EJB : : U oo
E : EJB ' Query :' Resource

PN / . Manager |

Database

Figure 2.4 Hibernate in a managed environment with an application server

Basic configuration 49

An application server exposes a connection pool as a INDI-bound datasource, an
instance of javax.jdbc.Datasource. You need to tell Hibernate where to find the
datasource in JNDI, by supplying a fully qualified JNDI name. An example Hiber-
nate configuration file for this scenario is shown in listing 2.5.

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB
hibernate.transaction. factory class = \
net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect

This file first gives the INDI name of the datasource. The datasource must be
configured in the J2EE enterprise application deployment descriptor; this is a
vendor-specific setting. Next, you enable Hibernate integration with JTA. Now
Hibernate needs to locate the application server’s TransactionManager in order to
integrate fully with the container transactions. No standard approach is defined
by the J2EE specification, but Hibernate includes support for all popular applica-
tion servers. Finally, of course, the Hibernate SQL dialect is required.

Now that you’ve configured everything correctly, using Hibernate in a managed
environmentisn’t much different than using itin anon-managed environment: Just
create a Configuration with mappings and build a sessionFactory. However, some
of the transaction environment-related settings deserve some extra consideration.

Java already has a standard transaction API, JTA, which is used to control trans-
actions in a managed environment with J2EE. This is called container-managed trans-
actions (CMT). If a JTA transaction manager is present, JDBC connections are
enlisted with this manager and under its full control. This isn’t the case in a non-
managed environment, where an application (or the pool) manages the JDBC con-
nections and JDBC transactions directly.

Therefore, managed and non-managed environments can use different transac-
tion methods. Since Hibernate needs to be portable across these environments, it
defines an API for controlling transactions. The Hibernate Transaction interface
abstracts the underlying JTA or JDBC transaction (or, potentially, even a CORBA
transaction). This underlying transaction strategy is set with the property hiber-
nate.connection.factory_class, and it can take one of the following two values:

50

CHAPTER 2
Introducing and integrating Hibernate

B net.sf.hibernate.transaction.JDBCTransactionFactory delegatestodirect
JDBC transactions. This strategy should be used with a connection pool in a
non-managed environment and is the default if no strategy is specified.

® net.sf.hibernate.transaction.JTATransactionFactory delegates to JTA.
This is the correct strategy for CMT, where connections are enlisted with JTA.
Note that if a JTA transaction is already in progress when beginTransac-
tion() is called, subsequent work takes place in the context of that transac-
tion (otherwise a new JTA transaction is started).

For a more detailed introduction to Hibernate’s Transaction API and the effects
on your specific application scenario, see chapter 5, section 5.1, “Transactions.”
Just remember the two steps that are necessary if you work with a J2EE application
server: Set the factory class for the Hibernate Transaction API to JTA as described
earlier, and declare the transaction manager lookup specific to your application
server. The lookup strategy is required only if you use the second-level caching sys-
tem in Hibernate, but it doesn’t hurt to set it even without using the cache.

HIBERNATE Tomcat isn’t a full application server; it’s just a servlet container, albeit a

TS’K/'E\T servlet container with some features usually found only in application

servers. One of these features may be used with Hibernate: the Tomcat

connection pool. Tomcat uses the DBCP connection pool internally but

exposes it as a JINDI datasource, just like a real application server. To con-

figure the Tomcat datasource, you’ll need to edit server.xml according

to instructions in the Tomcat JNDI/IDBC documentation. You can config-

ure Hibernate to use this datasource by setting hibernate.connec-

tion.datasource. Keep in mind that Tomcat doesn’t ship with a

transaction manager, so this situation is still more like a non-managed
environment as described earlier.

You should now have a running Hibernate system, whether you use a simple serv-
let container or an application server. Create and compile a persistent class (the
initial Message, for example), copy Hibernate and its required libraries to the
classpath together with a hibernate.properties file, and build a sessionFactory.

The next section covers advanced Hibernate configuration options. Some of
them are recommended, such as logging executed SQL statements for debugging
or using the convenient XML configuration file instead of plain properties. How-
ever, you may safely skip this section and come back later once you have read more
about persistent classes in chapter 3.

Advanced configuration settings 51

2.4 Advanced configuration settings

241

When you finally have a Hibernate application running, it’s well worth getting to
know all the Hibernate configuration parameters. These parameters let you opti-
mize the runtime behavior of Hibernate, especially by tuning the JDBC interaction
(for example, using JDBC batch updates).

We won’t bore you with these details now; the best source of information about
configuration options is the Hibernate reference documentation. In the previous
section, we showed you the options you’ll need to get started.

However, there is one parameter that we must emphasize at this point. You’ll
need it continually whenever you develop software with Hibernate. Setting the
property hibernate.show_sql to the value true enables logging of all generated
SQL to the console. You’ll use it for troubleshooting, performance tuning, and just
to see what’s going on. It pays to be aware of what your ORM layer is doing—that’s
why ORM doesn’t hide SQL from developers.

So far, we’ve assumed that you specify configuration parameters using a hiber-
nate.properties file or an instance of java.util.Properties programmatically.
There is a third option you’ll probably like: using an XML configuration file.

Using XML-based configuration

You can use an XML configuration file (as demonstrated in listing 2.6) to fully
configure a sessionFactory. Unlike hibernate.properties, which contains only
configuration parameters, the hibernate.cfg.xml file may also specify the loca-
tion of mapping documents. Many users prefer to centralize the configuration of
Hibernate in this way instead of adding parameters to the configuration in appli-
cation code.

?xml version='1.0'encoding='utf-8'?> Document type
<!DOCTYPE hibernate-configuration declaration
PUBLIC "-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">
<hibernate-configuration> Name
<session-factory name="java:/hibernate/HibernateFactory"> i’ attribute
<property name="show_sqgl">true</property>
<property name="connection.datasource">
java:/comp/env/jdbc/AuctionDB
</property>
<property name="dialect">
net.sf.hibernate.dialect.PostgreSQLDialect
</property>

Property
specifications

52

CHAPTER 2
Introducing and integrating Hibernate

net.sf.hibernate.transaction.JBossTransactionManagerLookup
</property>
<mapping resource="auction/Item.hbm.xml"/> k‘, Mapping

<property name="transaction.manager_lookup_class"> 2;

<mapping resource="auction/Category.hbm.xml"/> document
<mapping resource="auction/Bid.hbm.xml"/> specifications
</session-factory>
</hibernate-configuration>

The document type declaration is used by the XML parser to validate this document
against the Hibernate configuration DTD.

The optional name attribute is equivalent to the property hibernate.session_
factory_name and used for JNDI binding of the sessionFactory, discussed in the
next section.

Hibernate properties may be specified without the hibernate prefix. Property
names and values are otherwise identical to programmatic configuration
properties.

Mapping documents may be specified as application resources or even as hard-
coded filenames. The files used here are from our online auction application,
which we’ll introduce in chapter 3.

Now you can initialize Hibernate using

SessionFactory sessions = new Configuration()
.configure() .buildSessionFactory () ;
Wait—how did Hibernate know where the configuration file was located?

When configure() was called, Hibernate searched for a file named hiber-
nate.cfg.xml in the classpath. If you wish to use a different filename or have Hiber-
nate look in a subdirectory, you must pass a path to the configure () method:

SessionFactory sessions = new Configuration()

.configure("/hibernate-config/auction.cfg.xml")
.buildSessionFactory () ;
Using an XML configuration file is certainly more comfortable than a properties
file or even programmatic property configuration. The fact that you can have the
class mapping files externalized from the application’s source (even if it would be
only in a startup helper class) is a major benefit of this approach. You can, for
example, use different sets of mapping files (and different configuration
options), depending on your database and environment (development or pro-
duction), and switch them programatically.

24.2

Advanced configuration settings 53

If you have both hibernate.properties and hibernate.cfg.xml in the classpath,
the settings of the XML configuration file will override the settings used in the
properties. This is useful if you keep some base settings in properties and override
them for each deployment with an XML configuration file.

You may have noticed that the sessionFactory was also given a name in the XML
configuration file. Hibernate uses this name to automatically bind the sessionFac-
tory to JNDI after creation.

JNDI-bound SessionFactory

In most Hibernate applications, the sessionFactory should be instantiated once
during application initialization. The single instance should then be used by all
code in a particular process, and any sessions should be created using this single
SessionFactory. A frequently asked question is where this factory must be placed
and how it can be accessed without much hassle.

In a J2EE environment, a sessionFactory bound to JNDI is easily shared between
different threads and between various Hibernate-aware components. Or course,
JNDI isn’t the only way that application components might obtain a sessionFac-
tory. There are many possible implementations of this Registry pattern, including
use of the servletContext Or @ static final variable in a singleton. A particularly
elegant approach is to use an application scope 10C (Inversion of Control) frame-
work component. However, JNDI is a popular approach (and is exposed as a JIMX
service, as you'll see later). We discuss some of the alternatives in chapter 8,
section 8.1, “Designing layered applications.”

NOTE The Java Naming and Directory Interface (JNDI) API allows objects to be
stored to and retrieved from a hierarchical structure (directory tree).
JNDI implements the Registry pattern. Infrastructural objects (transac-
tion contexts, datasources), configuration settings (environment settings,
user registries), and even application objects (EJB references, object fac-
tories) may all be bound to JNDI.

The sessionFactory will automatically bind itself to JNDI if the property hiber-
nate.session_factory_name is set to the name of the directory node. If your run-
time environment doesn’t provide a default INDI context (or if the default JNDI
implementation doesn’t support instances of Referenceable), you heed to specify
a JNDI initial context using the properties hibernate.jndi.url and hiber-
nate.jndi.class.

54

243

CHAPTER 2
Introducing and integrating Hibernate

Here is an example Hibernate configuration that binds the sessionFactory to
the name hibernate/HibernateFactory using Sun’s (free) file system—based JNDI
implementation, fscontext.jar:

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB

hibernate.transaction.factory_class = \
net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \

net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.session_factory name = hibernate/HibernateFactory
hibernate.jndi.class = com.sun.jndi.fscontext.RefFSContextFactory
hibernate.jndi.url = file:/auction/jndi
Of course, you can also use the XML-based configuration for this task. This exam-
ple also isn’t realistic, since most application servers that provide a connection
pool through JNDI also have a JNDI implementation with a writable default con-
text. JBoss certainly has, so you can skip the last two properties and just specify a
name for the sessionFactory. All you have to do now is call configuration.con-

figure() .buildSessionFactory () once to initialize the binding.

NOTE Tomcat comes bundled with a read-only JNDI context, which isn’t writ-
able from application-level code after the startup of the servlet con-
tainer. Hibernate can’t bind to this context; you have to either use a full
context implementation (like the Sun FS context) or disable JNDI bind-
ing of the sessionFactory by omitting the session_factory_name prop-
erty in the configuration.

Let’s look at some other very important configuration settings that log Hibernate
operations.

Logging

Hibernate (and many other ORM implementations) executes SQL statements
asynchronously. An INSERT statement isn’t usually executed when the application
calls session.save(); an UPDATE isn’t immediately issued when the application
calls 1tem.addBid (). Instead, the SQL statements are usually issued at the end of a
transaction. This behavior is called write-behind, as we mentioned earlier.

This fact is evidence that tracing and debugging ORM code is sometimes non-
trivial. In theory, it’s possible for the application to treat Hibernate as a black box
and ignore this behavior. Certainly the Hibernate application can’t detect this
asynchronicity (at least, not without resorting to direct JDBC calls). However, when
you find yourself troubleshooting a difficult problem, you need to be able to see
exactly what’s going on inside Hibernate. Since Hibernate is open source, you can

244

Advanced configuration settings 55

easily step into the Hibernate code. Occasionally, doing so helps a great deal! But,
especially in the face of asynchronous behavior, debugging Hibernate can quickly
get you lost. You can use logging to get a view of Hibernate’s internals.

We’ve already mentioned the hibernate.show_sgl configuration parameter,
which is usually the first port of call when troubleshooting. Sometimes the SQL
alone is insufficient; in that case, you must dig a little deeper.

Hibernate logs all interesting events using Apache commons-logging, a thin
abstraction layer that directs output to either Apache log4j (if you put 1og4j.jar
in your classpath) or JDK1.4 logging (if you’re running under JDK1.4 or above and
log4j isn’t present). We recommend log4j, since it’s more mature, more popular,
and under more active development.

To see any output from log4j, you’ll need a file named log4j .properties in your
classpath (right next to hibernate.properties Or hibernate.cfg.xml). This exam-
ple directs all log messages to the console:

direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
logdj.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE}
= %5p %c{l}:%L - %m%n

root logger option

log4j.rootLogger=warn, stdout

Hibernate logging options
log4j.logger.net.sf.hibernate=info

log JDBC bind parameters
log4j.logger.net.sf.hibernate.type=info

log PreparedStatement cache activity
log4j.logger.net.sf.hibernate.ps.PreparedStatementCache=info

With this configuration, you won’t see many log messages at runtime. Replacing
info with debug for the 1og4j.logger.net.sf.hibernate category will reveal the
inner workings of Hibernate. Make sure you don’t do this in a production envi-
ronment—writing the log will be much slower than the actual database access.

Finally, you have the hibernate.properties, hibernate.cfg.xml, and
log4j.properties configuration files.

There is another way to configure Hibernate, if your application server supports
the Java Management Extensions.

Java Management Extensions (JMX)

The Java world is full of specifications, standards, and, of course, implementations
of these. A relatively new but important standard is in its first version: the Java

56

CHAPTER 2
Introducing and integrating Hibernate

Management Extensions (JMX). JMX is about the management of systems compo-
nents or, better, of system services.

Where does Hibernate fit into this new picture? Hibernate, when deployed in
an application server, makes use of other services like managed transactions and
pooled database transactions. But why not make Hibernate a managed service
itself, which others can depend on and use? This is possible with the Hibernate JIMX
integration, making Hibernate a managed JMX component.

The JMX specification defines the following components:

m The JMX MBean—A reusable component (usually infrastructural) that
exposes an interface for management (administration)

m The JMX container—Mediates generic access (local or remote) to the MBean

m The (usually generic) IMX client—May be used to administer any MBean via
the JMX container

An application server with support for IMX (such as JBoss) acts as a JMX container
and allows an MBean to be configured and initialized as part of the application
server startup process. It’s possible to monitor and administer the MBean using
the application server’s administration console (which acts as the JMX client).

An MBean may be packaged as a JMX service, which is not only portable
between application servers with IMX support but also deployable to a running sys-
tem (a hot deploy).

Hibernate may be packaged and administered as a IMX MBean. The Hibernate
JMX service allows Hibernate to be initialized at application server startup and con-
trolled (configured) via a IMX client. However, JMX components aren’t automati-
cally integrated with container-managed transactions. So, the configuration
options in listing 2.7 (a JBoss service deployment descriptor) look similar to the
usual Hibernate settings in a managed environment.

<server>
<mbean
code="net.sf.hibernate.jmx.HibernateService"
name="jboss.jca:service=HibernateFactory, name=HibernateFactory">
<depends>jboss.jca:service=RARDeployer</depends>
<depends>jboss.jca:service=LocalTxCM, name=DataSource</depends>
<attribute name="MapResources">
auction/Item.hbm.xml, auction/Bid.hbm.xml
</attribute>

Advanced configuration settings 57

<attribute name="JndiName">
java:/hibernate/HibernateFactory

</attribute>

<attribute name="Datasource">
java:/comp/env/jdbc/AuctionDB

</attribute>

<attribute name="Dialect">
net.sf.hibernate.dialect.PostgreSQLDialect

</attribute>

<attribute name="TransactionStrategy">
net.sf.hibernate.transaction.JTATransactionFactory

</attribute>

<attribute name="TransactionManagerLookupStrategy">
net.sf.hibernate.transaction.JBossTransactionManagerLookup

</attribute>

<attribute name="UserTransactionName">
java:/UserTransaction

</attribute>

</mbean>
</server>

The HibernateService depends on two other JMX services: service=RARDeployer
and service=LocalTxCM, name=DataSource, both in the jboss.jca service domain
name.

The Hibernate MBean may be found in the package net.sf.hibernate.jmx.
Unfortunately, lifecycle management methods like starting and stopping the JMX
service aren’t part of the JMX 1.0 specification. The methods start () and stop ()
of the HibernatesService are therefore specific to the JBoss application server.

NOTE If you’re interested in the advanced usage of JMX, JBoss is a good
open source starting point: All services (even the EJB container) in
JBoss are implemented as MBeans and can be managed via a supplied
console interface.

We recommend that you try to configure Hibernate programmatically (using the
Configuration object) before you try to run Hibernate as a JIMX service. However,
some features (like hot-redeployment of Hibernate applications) may be possible
only with JMX, once they become available in Hibernate. Right now, the biggest
advantage of Hibernate with JMX is the automatic startup; it means you no longer
have to create a configuration and build a sessionFactory in your application
code, but can simply access the sessionFactory through JNDI once the
HibernateService has been deployed and started.

58

CHAPTER 2
Introducing and integrating Hibernate

2.5 Summary

In this chapter, we took a high-level look at Hibernate and its architecture after
running a simple “Hello World” example. You also saw how to configure Hiber-
nate in various environments and with various techniques, even including JMX.

The configuration and SessionFactory interfaces are the entry points to
Hibernate for applications running in both managed and non-managed environ-
ments. Hibernate provides additional APIs, such as the Transaction interface, to
bridge the differences between environments and allow you to keep your persis-
tence code portable.

Hibernate can be integrated into almost every Java environment, be it a servlet,
an applet, or a fully managed three-tiered client/server application. The most
important elements of a Hibernate configuration are the database resources (con-
nection configuration), the transaction strategies, and, of course, the XML-based
mapping metadata.

Hibernate’s configuration interfaces have been designed to cover as many
usage scenarios as possible while still being easy to understand. Usually, a single
file named hibernate.cfg.xml and one line of code are enough to get Hibernate
up and running.

None of this is much use without some persistent classes and their XML mapping
documents. The next chapter is dedicated to writing and mapping persistent
classes. You’ll soon be able to store and retrieve persistent objects in a real applica-
tion with a nontrivial object/relational mapping.

Mapping persistent classes

This chapter covers

POJO basics for rich domain models
Mapping POJOs with Hibernate metadata

Mapping class inheritance and
fine-grained models

An introduction to class association mappings

59

60

3.1

CHAPTER 3
Mapping persistent classes

The “Hello World” example in chapter 2 introduced you to Hibernate; how-
ever, it isn’t very useful for understanding the requirements of real-world appli-
cations with complex data models. For the rest of the book, we’ll use a much
more sophisticated example application—an online auction system—to demon-
strate Hibernate.

In this chapter, we start our discussion of the application by introducing a pro-
gramming model for persistent classes. Designing and implementing the persis-
tent classes is a multistep process that we’ll examine in detail.

First, you’ll learn how to identify the business entities of a problem domain. We
create a conceptual model of these entities and their attributes, called a domain
model. We implement this domain model in Java by creating a persistent class for
each entity. (We’ll spend some time exploring exactly what these Java classes
should look like.)

We then define mapping metadata to tell Hibernate how these classes and their
properties relate to database tables and columns. This involves writing or generat-
ing XML documents that are eventually deployed along with the compiled Java
classes and used by Hibernate at runtime. This discussion of mapping metadata is
the core of this chapter, along with the in-depth exploration of the mapping tech-
niques for fine-grained classes, object identity, inheritance, and associations. This
chapter therefore provides the beginnings of a solution to the first four generic
problems of ORM listed in section 1.4.2, “Generic ORM problems.”

We’ll start by introducing the example application.

The CaveatEmptor application

The CaveatEmptor online auction application demonstrates ORM techniques and
Hibernate functionality; you can download the source code for the entire working
application from the web site http://caveatemptor.hibernate.org. The applica-
tion will have a web-based user interface and run inside a servlet engine like Tom-
cat. We won’t pay much attention to the user interface; we’ll concentrate on the
data access code. In chapter 8, we discuss the changes that would be necessary if
we were to perform all business logic and data access from a separate business-tier
implemented as EJB session beans.

But, let’s start at the beginning. In order to understand the design issues
involved in ORM, let’s pretend the CaveatEmptor application doesn’t yet exist, and
that we’re building it from scratch. Our first task would be analysis.

The CaveatEmptor application 61

3.1.1 Analyzing the business domain

3.1.2

A software development effort begins with analysis of the problem domain
(assuming that no legacy code or legacy database already exist).

At this stage, you, with the help of problem domain experts, identify the main
entities that are relevant to the software system. Entities are usually notions under-
stood by users of the system: payment, Customer, Order, Item, Bid, and so forth.
Some entities might be abstractions of less concrete things the user thinks about
(for example, PricingAlgorithm), but even these would usually be understandable
to the user. All these entities are found in the conceptual view of the business,
which we sometimes call a business model. Developers of object-oriented software
analyze the business model and create an object model, still at the conceptual level
(no Java code).This object model may be as simple as a mental image existing only
in the mind of the developer, or it may be as elaborate as a UML class diagram (as
in figure 3.1) created by a CASE (Computer-Aided Software Engineering) tool like
ArgoUML or Together].

This simple model contains entities that you’re bound to find in any typical auc-
tion system: category, Item, and User. The entities and their relationships (and
perhaps their attributes) are all represented by this model of the problem domain.
We call this kind of model—an object-oriented model of entities from the problem
domain, encompassing only those entities that are of interest to the user—a domain
model. It’s an abstract view of the real world. We refer to this model when we imple-
ment our persistent Java classes.

Let’s examine the outcome of our analysis of the problem domain of the Caveat-
Emptor application.

The CaveatEmptor domain model

The CaveatEmptor site auctions many different kinds of items, from electronic
equipment to airline tickets. Auctions proceed according to the “English auction”
model: Users continue to place bids on an item until the bid period for that item
expires, and the highest bidder wins.

In any store, goods are categorized by type and grouped with similar goods into
sections and onto shelves. Clearly, our auction catalog requires some kind of hier-
archy of item categories. A buyer may browse these categories or arbitrarily search
by category and item attributes. Lists of items appear in the category browser and

Figure 3.1 A class diagram of a typical online auction object model

62

CHAPTER 3
Mapping persistent classes

search result screens. Selecting an item from a list will take the buyer to an item
detail view.

An auction consists of a sequence of bids. One particular bid is the winning bid.
User details include name, login, address, email address, and billing information.

A web of trust is an essential feature of an online auction site. The web of trust
allows users to build a reputation for trustworthiness (or untrustworthiness). Buy-
ers may create comments about sellers (and vice versa), and the comments are vis-
ible to all other users.

A high-level overview of our domain model is shown in figure 3.2. Let’s briefly
discuss some interesting features of this model.

Each item may be auctioned only once, so we don’t need to make ttem distinct
from the auction entities. Instead, we have a single auction item entity named
Item. Thus, Bid is associated directly with 1tem. Users can write comments about
other users only in the context of an auction; hence the association between 1tem
and comment. The address information of a user is modeled as a separate class,
even though the user may have only one address. We do allow the user to have
multiple BillingDetailS. The various billing strategies are represented as sub-
classes of an abstract class (allowing future extension).

A category might be nested inside another category. This is expressed by a
recursive association, from the category entity to itself. Note that a single category
may have multiple child categories but at most one parent category. Each Item
belongs to at least one category.

The entities in a domain model should encapsulate state and behavior. For
example, the user entity should define the name and address of a customer and
the logic required to calculate the shipping costs for items (to this particular cus-
tomer). Our domain model is a rich object model, with complex associations,
interactions, and inheritance relationships. An interesting and detailed discussion
of object-oriented techniques for working with domain models can be found in
Patterns of Enterprise Application Architecture [Fowler 2003] or in Domain-Driven
Design [Evans 2004].

However, in this book, we won’t have much to say about business rules or about
the behavior of our domain model. This is certainly not because we consider this an
unimportant concern; rather, this concern is mostly orthogonal to the problem of
persistence. It’s the state of our entities that is persistent. So, we concentrate our
discussion on how to best represent state in our domain model, not on how to rep-
resent behavior. For example, in this book, we aren’t interested in how tax for sold
items is calculated or how the system might approve a new user account. We’re

63

The CaveatEmptor application

Bulg : Jeapdxa

sdiysuone|al 118y} pue [apow 303(qo JordwIrease) ay) Jo sasse|d Jualsisiad Z'€ ainbi4

Buls ymsyueq | | Buys : yyuopdxe
Bulyg :aweNdueq i : adAy sleq : pelesd
junoddyyueg pieDdpaId Buiig 1xe}
I : Bunes
<woly .0 juswiwioy .0 noge »
ajeq : pajeald
Buys uequinu oeq : pejesio ajeq : pajeaid
Buyg : Joaumo i : Bupjuel ajeq : ajegpus
syejegbulng =7 BuULS : lews oleq : ajeguels
buls : piomssed <[N}SS850nS lewroablg : eoldonesal
Bus : Ao Buis : sweusasn lewioabig : dudienu
Buinys : epoodiz Buis : sweuise| ajeq : pajyeald Buis : uonduosep
Buls : 19918 Buys : sweuysly jewioagbig :junowe Buig : sweu
ssalppy |[<—@ Jesn =5 pig 5 wey|
] «0
s||os >

H

Buys : sweu

*
—

Aiobajen

64

3.2

3.21

CHAPTER 3
Mapping persistent classes

more interested in how the relationship between users and the items they sell is
represented and made persistent.

FAQ Can you use ORM without a domain model? We stress that object persistence
with full ORM is most suitable for applications based on a rich domain
model. If your application doesn’t implement complex business rules or
complex interactions between entities (or if you have few entities), you
may not need a domain model. Many simple and some not-so-simple
problems are perfectly suited to table-oriented solutions, where the appli-
cation is designed around the database data model instead of around an
object-oriented domain model, often with logic executed in the database
(stored procedures). However, the more complex and expressive your
domain model, the more you will benefit from using Hibernate; it shines
when dealing with the full complexity of object/relational persistence.

Now that we have a domain model, our next step is to implement it in Java. Let’s
look at some of the things we need to consider.

Implementing the domain model

Several issues typically must be addressed when you implement a domain model
in Java. For instance, how do you separate the business concerns from the cross-
cutting concerns (such as transactions and even persistence)? What kind of persis-
tence is needed: Do you need automated or transparent persistence? Do you have to
use a specific programming model to achieve this? In this section, we examine
these types of issues and how to address them in a typical Hibernate application.

Let’s start with an issue that any implementation must deal with: the separa-
tion of concerns. The domain model implementation is usually a central, orga-
nizing component; it’s reused heavily whenever you implement new application
functionality. For this reason, you should be prepared to go to some lengths to
ensure that concerns other than business aspects don’t leak into the domain
model implementation.

Addressing leakage of concerns

The domain model implementation is such an important piece of code that it
shouldn’t depend on other Java APIs. For example, code in the domain model
shouldn’t perform JNDI lookups or call the database via the JDBC API. This allows
you to reuse the domain model implementation virtually anywhere. Most impor-
tantly, it makes it easy to unit test the domain model (in JUnit, for example) out-
side of any application server or other managed environment.

3.2.2

Implementing the domain model 65

We say that the domain model should be “concerned” only with modeling the
business domain. However, there are other concerns, such as persistence, transac-
tion management, and authorization. You shouldn’t put code that addresses these
cross-cutting concerns in the classes that implement the domain model. When these
concerns start to appear in the domain model classes, we call this an example of
leakage of concerns.

The EJB standard tries to solve the problem of leaky concerns. Indeed, if we
implemented our domain model using entity beans, the container would take care
of some concerns for us (or at least externalize those concerns to the deployment
descriptor). The EJB container prevents leakage of certain cross-cutting concerns
using interception. An EJB is a managed component, always executed inside the EIJB con-
tainer. The container intercepts calls to your beans and executes its own function-
ality. For example, it might pass control to the CMP engine, which takes care of
persistence. This approach allows the container to implement the predefined
cross-cutting concerns—security, concurrency, persistence, transactions, and
remoteness—in a generic way.

Unfortunately, the EJB specification imposes many rules and restrictions on how
you must implement a domain model. This in itself is a kind of leakage of con-
cerns—in this case, the concerns of the container implementor have leaked! Hiber-
nate isn’t an application server, and it doesn’t try to implement all the cross-cutting
concerns mentioned in the EJB specification. Hibernate is a solution for just one
of these concerns: persistence. If you require declarative security and transaction
management, you should still access your domain model via a session bean, taking
advantage of the EJB container’s implementation of these concerns. Hibernate is
commonly used together with the well-known session fagade J2EE pattern.

Much discussion has gone into the topic of persistence, and both Hibernate and
EJB entity beans take care of that concern. However, Hibernate offers something
that entity beans don’t: transparent persistence.

Transparent and automated persistence

Your application server’s CMP engine implements automated persistence. It takes
care of the tedious details of JDBC ResultSet and pPreparedStatement handling. So
does Hibernate; indeed, Hibernate is a great deal more sophisticated in this
respect. But Hibernate does this in a way that is transparent to your domain model.

We use transparent to mean a complete separation of concerns between the
persistent classes of the domain model and the persistence logic itself, where
the persistent classes are unaware of—and have no dependency to—the persis-
tence mechanism.

66

CHAPTER 3
Mapping persistent classes

Our 1tenm class, for example, will not have any code-level dependency to any
Hibernate API. Furthermore:

m Hibernate doesn’t require that any special superclasses or interfaces be
inherited or implemented by persistent classes. Nor are any special classes
used to implement properties or associations. Thus, transparent persistence
improves code readability, as you’ll soon see.

m Persistent classes may be reused outside the context of persistence, in unit
tests or in the user interface (Ul) tier, for example. Testability is a basic
requirement for applications with rich domain models.

= |n asystem with transparent persistence, objects aren’t aware of the underly-
ing data store; they need not even be aware that they are being persisted or
retrieved. Persistence concerns are externalized to a generic persistence man-
ager interface —in the case of Hibernate, the session and query interfaces.

Transparent persistence fosters a degree of portability; without special interfaces,
the persistent classes are decoupled from any particular persistence solution. Our
business logic is fully reusable in any other application context. We could easily
change to another transparent persistence mechanism.

By this definition of transparent persistence, you see that certain non-automated
persistence layers are transparent (for example, the DAO pattern) because they
decouple the persistence-related code with abstract programming interfaces. Only
plain Java classes without dependencies are exposed to the business logic. Con-
versely, some automated persistence layers (including entity beans and some ORM
solutions) are non-transparent, because they require special interfaces or intrusive
programming models.

We regard transparency as required. In fact, transparent persistence should be
one of the primary goals of any ORM solution. However, no automated persistence
solution is completely transparent: Every automated persistence layer, including
Hibernate, imposes some requirements on the persistent classes. For example,
Hibernate requires that collection-valued properties be typed to an interface such
as java.util.Set Or java.util.List and not to an actual implementation such as
java.util.HashSet (this is a good practice anyway). (We discuss the reasons for
this requirement in appendix B, “ORM implementation strategies.”)

You now know why the persistence mechanism should have minimal impact on
how you implement a domain model and that transparent and automated persis-
tence are required. EJB isn’t transparent, so what kind of programming model
should you use? Do you need a special programming model at all? In theory, no;

Implementing the domain model 67

in practice, you should adopt a disciplined, consistent programming model that is
well accepted by the Java community. Let’s discuss this programming model and
see how it works with Hibernate.

3.2.3 Writing POJOs

Developers have found entity beans to be tedious, unnatural, and unproductive. As
a reaction against entity beans, many developers started talking about Plain Old
Java Objects (POJOS), a back-to-basics approach that essentially revives JavaBeans, a
component model for Ul development, and reapplies it to the business layer. (Most
developers are now using the terms POJO and JavaBean almost synonymously.)*

Hibernate works best with a domain model implemented as POJOs. The few
requirements that Hibernate imposes on your domain model are also best prac-
tices for the POJO programming model. So, most POJOs are Hibernate-compatible
without any changes. The programming model we’ll introduce is a non-intrusive
mix of JavaBean specification details, POJO best practices, and Hibernate require-
ments. A POJO declares business methods, which define behavior, and properties,
which represent state. Some properties represent associations to other POJOs.

Listing 3.1 shows a simple POJO class; it’s an implementation of the user entity
of our domain model.

public class User Implementation
implements Serializable { " of Serializable

private String username;
private Address address;

public User() {} < Class constructor

public String getUsername () {
return username;

}

public void setUsername (String username) {

. Accessor
this.username = username; /G,
e " e . methods

}

public Address getAddress() {
return address;

} Y

1 POJO is sometimes also written as Plain Ordinary Java Objects; this term was coined in 2002 by Martin
Fowler, Rebecca Parsons, and Josh Mackenzie.

68

CHAPTER 3
Mapping persistent classes

public void setAddress (Address address) {
this.address = address;

}

public MonetaryAmount calcShippingCosts (Address fromLocation) { 71’

} Business method

Hibernate doesn’t require that persistent classes implement Serializable. How-
ever, when objects are stored in an HttpSession Or passed by value using RMI, seri-
alization is necessary. (This is very likely to happen in a Hibernate application.)

Unlike the JavaBeans specification, which requires no specific constructor, Hiber-
nate requires a constructor with no arguments for every persistent class. Hiber-
nate instantiates persistent classes using Constructor.newInstance (), a feature of
the Java reflection API. The constructor may be non-public, but it should be at
least package-visible if runtime-generated proxies will be used for performance
optimization (see chapter 4).

The properties of the POJO implement the attributes of our business entities—for
example, the username of user. Properties are usually implemented as instance
variables, together with property accessor methods: a method for retrieving the value
of the instance variable and a method for changing its value. These methods are
known as the getter and setter, respectively. Our example POJO declares getter and
setter methods for the private username instance variable and also for address.

The JavaBean specification defines the guidelines for naming these methods.
The guidelines allow generic tools like Hibernate to easily discover and manipu-
late the property value. A getter method name begins with get, followed by the
name of the property (the first letter in uppercase); a setter method name begins
with set. Getter methods for Boolean properties may begin with is instead of get.

Hibernate doesn’t require that accessor methods be declared public; it can eas-
ily use private accessors for property management.

Some getter and setter methods do something more sophisticated than simple
instance variables access (validation, for example). Trivial accessor methods are
common, however.

This POJO also defines a business method that calculates the cost of shipping an
item to a particular user (we left out the implementation of this method).

3.24

Implementing the domain model 69

Now that you understand the value of using POJO persistent classes as the pro-
gramming model, let’s see how you handle the associations between those classes.

Implementing POJO associations
You use properties to express associations between POJO

Category classes, and you use accessor methods to navigate the object
0.*| hame : String graph at runtime. Let’s consider the associations defined by
the category class. The first association is shown in
figure 3.3.
Figure3.3 Diagramof As with all our diagrams, we left out the association-
the category class . .)
with an association related attributes (parentCategory and childCategories)

because they would clutter the illustration. These attributes
and the methods that manipulate their values are called scaffolding code.
Let’s implement the scaffolding code for the one-to-many self-association of
Category.
public class Category implements Serializable {
private String name;

private Category parentCategory;
private Set childCategories = new HashSet () ;

public Category () { }

}

To allow bidirectional navigation of the association, we require two attributes. The
parentCategory attribute implements the single-valued end of the association and is
declared to be of type category. The many-valued end, implemented by the chiid-
Categories attribute, must be of collection type. We choose a set, since duplicates
are disallowed, and initialize the instance variable to a new instance of Hashset.

Hibernate requires interfaces for collection-typed attributes. You must use
java.util.Set rather than Hashset, for example. At runtime, Hibernate wraps the
HashSet instance with an instance of one of Hibernate’s own classes. (This special
class isn’t visible to the application code). It is good practice to program to collec-
tion interfaces, rather than concrete implementations, so this restriction shouldn’t
bother you.

We now have some private instance variables but no public interface to allow
access from business code or property management by Hibernate. Let’s add some
accessor methods to the category class:

public String getName () {

return name;

}

70

CHAPTER 3
Mapping persistent classes

public void setName (String name) {
this.name = name;

}

public Set getChildCategories() {
return childCategories;

}

public void setChildCategories(Set childCategories) {
this.childCategories = childCategories;
}

public Category getParentCategory () {
return parentCategory;

}

public void setParentCategory (Category parentCategory) ({
this.parentCategory = parentCategory;
}

Again, these accessor methods need to be declared public only if they’re part of
the external interface of the persistent class, the public interface used by the
application logic.

The basic procedure for adding a child category to a parent category looks like
this:

Category aParent = new Category();

Category aChild = new Category () ;

aChild.setParentCategory (aParent) ;

aParent.getChildCategories () .add(aChild) ;
Whenever an association is created between a parent category and a child cate-
gory, two actions are required:

m The parentcategory Of the child must be set, effectively breaking the associ-
ation between the child and its old parent (there can be only one parent for
any child).

m The child must be added to the childcategories collection of the new par-
ent category.

MANAGED Hibernate doesn’t “manage” persistent associations. If you want to manip-
RsEl-IffAﬁTsl?rw- ulate an association, you must write exactly the same code you would write
HIBERNATE Without Hibernate. If an association is bidirectional, both sides of the rela-
tionship must be considered. Programming models like EJB entity beans
muddle this behavior by introducing container-managed relationships. The
container automatically changes the other side of a relationship if one
side is modified by the application. This is one of the reasons why code

that uses entity beans can’t be reused outside the container.

Implementing the domain model 71

If you ever have problems understanding the behavior of associations in Hiber-
nate, just ask yourself, “What would | do without Hibernate?” Hibernate doesn’t
change the usual Java semantics.

It’s a good idea to add a convenience method to the category class that groups
these operations, allowing reuse and helping ensure correctness:

public void addChildCategory (Category childCategory) {

if (childCategory == null)
throw new IllegalArgumentException("Null child category!");
if (childCategory.getParentCategory() != null)

childCategory.getParentCategory () .getChildCategories()
.remove (childCategory) ;
childCategory.setParentCategory (this) ;
childCategories.add(childCategory) ;

}

The addchildcategory () method not only reduces the lines of code when dealing
with category objects, but also enforces the cardinality of the association. Errors
that arise from leaving out one of the two required actions are avoided. This kind
of grouping of operations should always be provided for associations, if possible.

Because we would like the addchildcategory () to be the only externally visible
mutator method for the child categories, we make the setChildCategories()
method private. Hibernate doesn’t care if property accessor methods are private
or public, so we can focus on good API design.

A different kind of relationship exists between category and the 1tem: a bidirec-
tional many-to-many association (see figure 3.4).

In the case of a many-to-many association, both sides are implemented with col-
lection-valued attributes. Let’s add the new attributes and methods to access the
Item class to our category class, as shown in listing 3.2.

ltem

name : String
description : String

Category 1.+ o.+| initialPrice : BigDecimal
0. | name : String reservePrice : BigDecimal
startDate : Date
endDate : Date Figure 3.4

Category and the

created : Date .
associated Item

72

CHAPTER 3
Mapping persistent classes

Listing 3.2 Category to Item scaffolding code

public class Category {
private Set items = new HashSet () ;

public Set getItems() {
return items;

}

public void setItems (Set items) {
this.items = items;

}

The code for the 1tem class (the other end of the many-to-many association) is
similar to the code for the category class. We add the collection attribute, the
standard accessor methods, and a method that simplifies relationship manage-
ment (you can also add this to the category class, see listing 3.3).

Listing 3.3 Item to Category scaffolding code

public class Item {

private String name;
private String description;

private Set categories = new HashSet () ;

public Set getCategories() {
return categories;

}

private void setCategories(Set categories) {
this.categories = categories;
}

public void addCategory (Category category) {
if (category == null)
throw new IllegalArgumentException("Null category");
category.getItems () .add(this);
categories.add(category) ;

Implementing the domain model 73

The addcategory () of the Item method is similar to the addchildcategory conve-
nience method of the category class. It’s used by a client to manipulate the rela-
tionship between Ttem and a category. For the sake of readability, we won’t show
convenience methods in future code samples and assume you’ll add them accord-
ing to your own taste.

Convenience methods for association handling is however not the only way to
improve a domain model implementation. You can also add logic to your acces-
sor methods.

3.2.5 Adding logic to accessor methods

One of the reasons we like to use JavaBeans-style accessor methods is that they
provide encapsulation: The hidden internal implementation of a property can be
changed without any changes to the public interface. This allows you to abstract
the internal data structure of a class—the instance variables—from the design of
the database.

For example, if your database stores a name of the user as a single Nave column,
but your user class has firstname and lastname properties, you can add the follow-
ing persistent name property to your class:

public class User {

private String firstname;
private String lastname;

public String getName () {
return firstname + ' ' + lastname;

}

public void setName (String name) {
StringTokenizer t = new StringTokenizer (name) ;
firstname = t.nextToken() ;
lastname = t.nextToken() ;

}

Later, you’ll see that a Hibernate custom type is probably a better way to handle

many of these kinds of situations. However, it helps to have several options.
Accessor methods can also perform validation. For instance, in the following

example, the setFirstName () method verifies that the name is capitalized:

public class User {
private String firstname;

74

CHAPTER 3
Mapping persistent classes

public String getFirstname() {
return firstname;

}

public void setFirstname (String firstname)
throws InvalidNameException {

if (!StringUtil.isCapitalizedName (firstname))
throw new InvalidNameException (firstname) ;
this.firstname = firstname;

}

However, Hibernate will later use our accessor methods to populate the state of
an object when loading the object from the database. Sometimes we would prefer
that this validation not occur when Hibernate is initializing a newly loaded object.
In that case, it might make sense to tell Hibernate to directly access the instance
variables (we map the property with access="field" in Hibernate metadata),
forcing Hibernate to bypass the setter method and access the instance variable
directly. Another issue to consider is dirty checking. Hibernate automatically detects
object state changes in order to synchronize the updated state with the database.
It’s usually completely safe to return a different object from the getter method to
the object passed by Hibernate to the setter. Hibernate will compare the objects
by value—not by object identity—to determine if the property’s persistent state
needs to be updated. For example, the following getter method won’t result in
unnecessary SQL UPDATES:

public String getFirstname() {

return new String(firstname) ;

}

However, there is one very important exception. Collections are compared by
identity!

For a property mapped as a persistent collection, you should return exactly the
same collection instance from the getter method as Hibernate passed to the setter
method. If you don’t, Hibernate will update the database, even if no update is nec-
essary, every time the session synchronizes state held in memory with the database.
This kind of code should almost always be avoided in accessor methodes:

public void setNames (List namesList) {
names = (String[]) namesList.toArray();

}

public List getNames () {
return Arrays.asList (names) ;

}

3.3

3.31

Defining the mapping metadata 75

You can see that Hibernate doesn’t unnecessarily restrict the JavaBeans (POJO)
programming model. You’re free to implement whatever logic you need in acces-
sor methods (as long as you keep the same collection instance in both getter and
setter). If absolutely necessary, you can tell Hibernate to use a different access
strategy to read and set the state of a property (for example, direct instance field
access), as you'’ll see later. This kind of transparency guarantees an independent
and reusable domain model implementation.

Now that we’ve implemented some persistent classes of our domain model, we
need to define the ORM.

Defining the mapping metadata

ORM tools require a metadata format for the application to specify the mapping
between classes and tables, properties and columns, associations and foreign keys,
Java types and SQL types. This information is called the object/relational mapping
metadata. It defines the transformation between the different data type systems
and relationship representations.

It’s our job as developers to define and maintain this metadata. We discuss vari-
ous approaches in this section.

Metadata in XML

Any ORM solution should provide a human-readable, easily hand-editable map-
ping format, not only a GUI mapping tool. Currently, the most popular object/
relational metadata format is XML. Mapping documents written in and with XML
are lightweight, are human readable, are easily manipulated by version-control
systems and text editors, and may be customized at deployment time (or even at
runtime, with programmatic XML generation).

But is XML-based metadata really the best approach? A certain backlash against
the overuse of XML can be seen in the Java community. Every framework and appli-
cation server seems to require its own XML descriptors.

In our view, there are three main reasons for this backlash:

= Many existing metadata formats weren’t designed to be readable and easy
to edit by hand. In particular, a major cause of pain is the lack of sensible
defaults for attribute and element values, requiring significantly more typ-
ing than should be necessary.

m Metadata-based solutions were often used inappropriately. Metadata is not,
by nature, more flexible or maintainable than plain Java code.

76

CHAPTER 3
Mapping persistent classes

m Good XML editors, especially in IDEs, aren’t as common as good Java
coding environments. Worst, and most easily fixable, a document type
declaration (DTD) often isn’t provided, preventing auto-completion and
validation. Another problem are DTDs that are too generic, where every
declaration is wrapped in a generic “extension” of “meta” element.

There is no getting around the need for text-based metadata in ORM. However,
Hibernate was designed with full awareness of the typical metadata problems. The
metadata format is extremely readable and defines useful default values. When
attribute values are missing, Hibernate uses reflection on the mapped class to
help determine the defaults. Hibernate comes with a documented and complete
DTD. Finally, IDE support for XML has improved lately, and modern IDEs provide
dynamic XML validation and even an auto-complete feature. If that’s not enough
for you, in chapter 9 we demonstrate some tools that may be used to generate
Hibernate XML mappings.

Let’s look at the way you can use XML metadata in Hibernate. We created the
Category class in the previous section; now we need to map it to the caTecory table
in the database. To do that, we use the XML mapping document in listing 3.4.

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping 49 DTD declaration
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

Mapping
<hibernate-mapping> declaration Q Category class mapped
<class < to table CATEGORY

name="org.hibernate.auction.model.Category"
table="CATEGORY">

Identifier
<id < mapping
name="3id"
column="CATEGORY_ID"
type="long">
<generator class="native"/>
</id>

9 Name property mapped
<property to NAME column

name="name"
column="NAME"
type="string"/>

</class>
</hibernate-mapping>

Defining the mapping metadata 77

The Hibernate mapping DTD should be declared in every mapping file; it’s
required for syntactic validation of the XML.

Mappings are declared inside a <hibernate-mapping> element. You can include as
many class mappings as you like, along with certain other special declarations that
we’ll mention later in the book.

The class category (in the package org.hibernate.auction.model) iS mapped to
the table caTecory. Every row in this table represents one instance of type
Category.

We haven’t discussed the concept of object identity, so you may be surprised by this
mapping element. This complex topic is covered in section 3.4. To understand
this mapping, it’s sufficient to know that every record in the caTecory table will
have a primary key value that matches the object identity of the instance in mem-
ory. The <id> mapping element is used to define the details of object identity.

The property name of type string is mapped to a database column naMe. Note
that the type declared in the mapping is a built-in Hibernate type (string), not
the type of the Java property or the SQL column type. Think about this as the
“mapping data type.” We take a closer look at these types in chapter 6, section 6.1,
“Understanding the Hibernate type system.”

We’ve intentionally left the association mappings out of this example. Association
mappings are more complex, so we’ll return to them in section 3.7.

TRYIT Starting Hibernate with your first persistent class—After you’ve written the
POJO code for the category and saved its Hibernate mapping to an XML
file, you can start up Hibernate with this mapping and try some opera-
tions. However, the POJO code for Ccategory shown earlier wasn’t com-
plete: You have to add an additional property named id of type
java.lang.Long and its accessor methods to enable Hibernate identity
management, as discussed later in this chapter. Creating the database
schema with its tables for such a simple class should be no problem for
you. Observe the log of your application to check for a successful startup
and creation of a new SessionFactory from the configuration shown
in chapter 2.

If you can’t wait any longer, check out the save(), load(), and
delete () methods of the session you can obtain from the SessionFac-
tory. Make sure you correctly deal with transactions; the easiest way is to
get a new Transaction Object with Session.beginTransaction() and
commit it with its commit () method after you’ve made your calls. See the
code in section 2.1, “Hello World with Hibernate,” if you’d like to copy
some example code for your first test.

78

3.3.2

CHAPTER 3
Mapping persistent classes

Although it’s possible to declare mappings for multiple classes in one mapping
file by using multiple <class> elements, the recommended practice (and the
practice expected by some Hibernate tools) is to use one mapping file per persis-
tent class. The convention is to give the file the same name as the mapped class,
appending an hbm suffix: for example, category.hbm.xml.

Let’s discuss basic class and property mappings in Hibernate. Keep in mind that
we still need to come back later in this chapter to the problem of mapping associ-
ations between persistent classes.

Basic property and class mappings

A typical Hibernate property mapping defines a JavaBeans property name, a data-
base column name, and the name of a Hibernate type. It maps a JavaBean style
property to a table column. The basic declaration provides many variations and
optional settings. It’s often possible to omit the type name. So, if description isa
property of (Java) type java.lang.String, Hibernate will use the Hibernate type
string by default (we discuss the Hibernate type system in chapter 6). Hibernate
uses reflection to determine the Java type of the property. Thus, the following
mappings are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>

<property name="description" column="DESCRIPTION"/>

You can even omit the column name if it’s the same as the property name, ignor-
ing case. (This is one of the sensible defaults we mentioned earlier.)

For some cases you might need to use a <column> element instead of the column
attribute. The <column> element provides more flexibility; it has more optional
attributes and may appear more than once. The following two property mappings
are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>

<property name="description" type="string">
<column name="DESCRIPTION"/>

</property>
The <property> element (and especially the <column> element) also defines cer-
tain attributes that apply mainly to automatic database schema generation. If you
aren’t using the hom2dd1 tool (see section 9.2, “Automatic schema generation™) to
generate the database schema, you can safely omit these. However, it’s still prefer-
able to include at least the not-nul1 attribute, since Hibernate will then be able to
report illegal null property values without going to the database:

Defining the mapping metadata 79

<property name="initialPrice" column="INITIAL_PRICE" not-null="true"/>

Detection of illegal null values is mainly useful for providing sensible exceptions
at development time. It isn’t intended for true data validation, which is outside
the scope of Hibernate.

Some properties don’t map to a column at all. In particular, a derived property
takes its value from an SQL expression.

Using derived properties
The value of a derived property is calculated at runtime by evaluation of an
expression. You define the expression using the formula attribute. For example,
we might map a totalIncludingTax property without having a single column with
the total price in the database:
<property name="totalIncludingTax"
formula="TOTAL + TAX_RATE * TOTAL"
type="big_decimal"/>
The given SQL formula is evaluated every time the entity is retrieved from the
database. The property doesn’t have a column attribute (or sub-element) and
never appears in an SQL INSERT or UPDATE, only in SELECTs. Formulas may refer
to columns of the database table, call SQL functions, and include SQL subselects.
This example, mapping a derived property of item, uses a correlated subselect
to calculate the average amount of all bids for an item:

<property
name="averageBidAmount"
formula="(select AVG(b.AMOUNT) from BID b

=where b.ITEM _ID = ITEM_ID)"
type="big_decimal"/>
Notice that unqualified column names refer to table columns of the class to which
the derived property belongs.
As we mentioned earlier, Hibernate doesn’t require property accessor methods
on POJO classes, if you define a new property access strategy.

Property access strategies

The access attribute allows you to specify how Hibernate should access property
values of the POJO. The default strategy, property, uses the property accessors
(get/set method pair). The field strategy uses reflection to access the instance
variable directly. The following “property” mapping doesn’t require a get/set pair:

<property name="name"
column="NAME"

80

CHAPTER 3
Mapping persistent classes

type="string"

access="field"/>
Access to properties via accessor methods is considered best practice by the Hiber-
nate community. It provides an extra level of abstraction between the Java domain
model and the data model, beyond what is already provided by Hibernate. Prop-
erties are more flexible; for example, property definitions may be overridden by
persistent subclasses.

If neither accessor methods nor direct instance variable access is appropriate,
you can define your own customized property access strategy by implementing
the interface net.sf.hibernate.property.PropertyAccessor and name it in the
access attribute.

Controlling insertion and updates
For properties that map to columns, you can control whether they appear in the
INSERT statement by using the insert attribute and whether they appear in the
UPDATE Statement by using the update attribute.
The following property never has its state written to the database:
<property name="name"
column="NAME"
type="string"
insert="false"
update="false"/>
The property name of the JavaBean is therefore immutable and can be read from
the database but not modified in any way. If the complete class is immutable, set
the immutable="false" in the class mapping
In addition, the dynamic-insert attribute tells Hibernate whether to include
unmodified property values in an SQL INSERT, and the dynamic-update attribute
tells Hibernate whether to include unmodified properties in the SQL upDATE:
<class name="org.hibernate.auction.model.User"

dynamic-insert="true"
dynamic-update="true">

</class>

These are both class-level settings. Enabling either of these settings will cause
Hibernate to generate some SQL at runtime, instead of using the SQL cached at
startup time. The performance cost is usually small. Furthermore, leaving out
columns in an insert (and especially in an update) can occasionally improve
performance if your tables define many columns.

Defining the mapping metadata 81

Using quoted SQL identifiers

By default, Hibernate doesn’t quote table and column names in the generated
SQL. This makes the SQL slightly more readable and also allows us to take advan-
tage of the fact that most SQL databases are case insensitive when comparing
unquoted identifiers. From time to time, especially in legacy databases, you’ll
encounter identifiers with strange characters or whitespace, or you may wish to
force case-sensitivity.

If you quote a table or column name with backticks in the mapping docu-
ment, Hibernate will always quote this identifier in the generated SQL. The fol-
lowing property declaration forces Hibernate to generate SQL with the quoted
column name "Item Description". Hibernate will also know that Microsoft SQL
Server needs the variation [Item Description] and that MySQL requires “Item
Description’.

<property name="description"

column=""Item Description'"/>
There is no way, apart from quoting all table and column names in backticks, to
force Hibernate to use quoted identifiers everywhere.

Naming conventions

You’ll often encounter organizations with strict conventions for database table
and column names. Hibernate provides a feature that allows you to enforce nam-
ing standards automatically.

Suppose that all table names in CaveatEmptor should follow the pattern
CE_<table name>.

One solution is to manually specify a table attribute on all <c1ass> and collec-
tion elements in our mapping files. This approach is time-consuming and easily
forgotten. Instead, we can implement Hibernate’s NamingStrategy interface, as in
listing 3.5

public class CENamingStrategy implements NamingStrategy {

public String classToTableName (String className) {
return tableName (
StringHelper.unqualify (className) . toUpperCase());
}

public String propertyToColumnName (String propertyName) {
return propertyName.toUpperCase() ;

}

82

CHAPTER 3
Mapping persistent classes

public String tableName (String tableName) {
return "CE_" + tableName;

}

public String columnName (String columnName) {
return columnName;

}

public String propertyToTableName (String className,
String propertyName) {
return classToTableName (className) + '_' +
propertyToColumnName (propertyName) ;

The classToTableName () method is called only if a <class> mapping doesn’t spec-
ify an explicit table name. The propertyToColumnName () method is called if a
property has no explicit column name. The tableName () and columnName () meth-
ods are called when an explicit name is declared.

If we enable our cENamingStrategy, this class mapping declaration

<class name="BankAccount">

will result in cE_BaNKACCOUNT as the name of the table. The classToTableName ()
method was called with the fully qualified class name as the argument.
However, if a table name is specified

<class name="BankAccount" table="BANK_ACCOUNT">

then ce_gank_accounT will be the name of the table. In this case, BANK_ACCOUNT was
passed to the tableName () method.

The best feature of the NamingStrategy is the potential for dynamic behavior.
To activate a specific naming strategy, we can pass an instance to the Hibernate
configuration at runtime:

Configuration cfg = new Configuration();

cfg.setNamingStrategy (new CENamingStrategy ());

SessionFactory sessionFactory =

cfg.configure() .buildSessionFactory () ;
This will allow us to have multiple sessionFactory instances based on the same
mapping documents, each using a different NamingStrategy. This is extremely
useful in a multiclient installation where unique table names (but the same data
model) are required for each client.

Defining the mapping metadata 83

However, a better way to handle this kind of requirement is to use the concept
of an SQL schema (a kind of namespace).

SQL schemas
You can specify a default schema using the hibernate.default_schema configura-
tion option. Alternatively, you can specify a schema in the mapping document. A
schema may be specified for a particular class or collection mapping:
<hibernate-mapping>
<class
name="org.hibernate.auction.model.Category"

table="CATEGORY"
schema="AUCTION">

</class>
</hibernate-mapping>

It can even be declared for the whole document:

<hibernate-mapping
default-schema="AUCTION">

</hibernate-mapping>

This isn’t the only thing the root <hibernate-mapping> element is useful for.

Declaring class hames
All the persistent classes of the CaveatEmptor application are declared in the Java
package org.hibernate.auction.model. It would become tedious to specify this
package name every time we named a class in our mapping documents.

Let’s reconsider our mapping for the category class (the file cate-
gory.hbm.xml):

<?xml version="1.0"7?>

<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class
name="org.hibernate.auction.model.Category"
table="CATEGORY">
</class>
</hibernate-mapping>

84

3.3.3

CHAPTER 3
Mapping persistent classes

We don’t want to repeat the full package name whenever this or any other class is
named in an association, subclass, or component mapping. So, instead, we’ll spec-
ify a package:

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping
package="org.hibernate.auction.model">
<class
name="Category"
table="CATEGORY">

</clééé>

</hibernate-mapping>
Now all unqualified class names that appear in this mapping document will be
prefixed with the declared package name. We assume this setting in all mapping
examples in this book.

If writing XML files by hand (using the DTD for auto-completion, of course) still
seems like too much work, attribute-oriented programming might be a good choice.
Hibernate mapping files can be automatically generated from attributes directly
embedded in the Java source code.

Attribute-oriented programming

The innovative XDaoclet project has brought the notion of attribute-oriented pro-
gramming to Java. Until JDK 1.5, the Java language had no support for annota-
tions; so XDoclet leverages the Javadoc tag format (eattribute) to specify class-,
field-, or method-level metadata attributes. (There is a book about XDoclet from
Manning Publications: XDoclet in Action [Walls/Richards, 2004].)

XDoclet is implemented as an Ant task that generates code or XML metadata as
part of the build process. Creating the Hibernate XML mapping document with
XDoclet is straightforward; instead of writing it by hand, we mark up the Java
source code of our persistent class with custom Javadoc tags, as shown in listing 3.6.

/**

* The Category class of the CaveatEmptor auction site domain model.
*

* @hibernate.class

* table="CATEGORY"

*/

Defining the mapping metadata 85

public class Category {

/**
* @hibernate.id
* generator-class="native"
* column="CATEGORY_ID"
*/
public Long getId() {
return id;
}

/**
* @hibernate.property
*/
public String getName () {
return name;

}

With the annotated class in place and an Ant task ready, we can automatically gen-
erate the same XML document shown in the previous section (listing 3.4).

The downside to XDoclet is the requirement for another build step. Most large
Java projects are using Ant already, so this is usually a non-issue. Arguably, XDoclet
mappings are less configurable at deployment time. However, nothing is stopping
you from hand-editing the generated XML before deployment, so this probably
isn’t a significant objection. Finally, support for XDoclet tag validation may not be
available in your development environment. However, JetBrains IntelliJ IDEA and
Eclipse both support at least auto-completion of tag names. (We look at the use of
XDoclet with Hibernate in chapter 9, section 9.5, “XDoclet.”)

NOTE XDoclet isn’t a standard approach to attribute-oriented metadata. A new
Java specification, JSR 175, defines annotations as extensions to the Java
language. JSR 175 is already implemented in JDK 1.5, so projects like
XDoclet and Hibernate will probably provide support for JSR 175 annota-
tions in the near future.

Both of the approaches we have described so far, XML and XDoclet attributes,
assume that all mapping information is known at deployment time. Suppose that
some information isn’t known before the application starts. Can you programmat-
ically manipulate the mapping metadata at runtime?

86

CHAPTER 3
Mapping persistent classes

3.3.4 Manipulating metadata at runtime

It’s sometimes useful for an application to browse, manipulate, or build new map-
pings at runtime. XML APIs like DOM, dom4j, and JDOM allow direct runtime
manipulation of XML documents. So, you could create or manipulate an XML
document at runtime, before feeding it to the configuration object.

However, Hibernate also exposes a configuration-time metamodel. The meta-
model contains all the information declared in your XML mapping documents.
Direct programmatic manipulation of this metamodel is sometimes useful, espe-
cially for applications that allow for extension by user-written code.

For example, the following code adds a new property, motto, to the User class

mapping:

// Get the existing mapping for User from Configuration
PersistentClass userMapping = cfg.getClassMapping (User.class) ;

// Define a new column for the USER table
Column column = new Column() ;
column.setType (Hibernate.STRING) ;

column. setName ("MOTTO") ;
column.setNullable(false) ;
column.setUnique (true) ;
userMapping.getTable () .addColumn (column) ;

// Wrap the column in a Value
SimplevValue value = new SimpleValue();
value.setTable(userMapping.getTable());
value.addColumn (column) ;

value.setType (Hibernate.STRING) ;

// Define a new property of the User class
Property prop = new Property();
prop.setValue (value) ;

prop.setName ("motto") ;
userMapping.addProperty (prop) ;

// Build a new session factory, using the new mapping

SessionFactory sf = cfg.buildSessionFactory () ;
A persistentClass object represents the metamodel for a single persistent class;
we retrieve it from the configuration. Column, Simplevalue, and Property are all
classes of the Hibernate metamodel and are available in the package
net.sf.hibernate.mapping. Keep in mind that adding a property to an existing
persistent class mapping as shown here is easy, but programmatically creating a
new mapping for a previously unmapped class is quite a bit more involved.

Once a sessionFactory is created, its mappings are immutable. In fact, the ses-
sionFactory uses a different metamodel internally than the one used at configura-

3.4

341

Understanding object identity 87

tion time. There is no way to get back to the original configuration from the
SessionFactory OF Session. However, the application may read the sessionFac-
tory’s metamodel by calling getClassMetadata() OF getCollectionMetadatal().
For example:

Category category = ...;

ClassMetadata meta = sessionFactory.getClassMetadata (Category.class);

String[] metaPropertyNames = meta.getPropertyNames () ;

Object[] propertyValues = meta.getPropertyValues (category) ;
This code snippet retrieves the names of persistent properties of the category
class and the values of those properties for a particular instance. This helps you
write generic code. For example, you might use this feature to label Ul compo-
nents or improve log output.

Now let’s turn to a special mapping element you’ve seen in most of our previous
examples: the identifier property mapping. We’ll begin by discussing the notion of
object identity.

Understanding object identity

It’s vital to understand the difference between object identity and object equality
before we discuss terms like database identity and how Hibernate manages identity.
We need these concepts if we want to finish mapping our CaveatEmptor persistent
classes and their associations with Hibernate.

Identity versus equality

Java developers understand the difference between Java object identity and equality.
Object identity, ==, is a notion defined by the Java virtual machine. Two object ref-
erences are identical if they point to the same memory location.

On the other hand, object equality is a notion defined by classes that implement
the equals () method, sometimes also referred to as equivalence. Equivalence means
that two different (non-identical) objects have the same value. Two different
instances of string are equal if they represent the same sequence of characters,
even though they each have their own location in the memory space of the virtual
machine. (We admit that this is not entirely true for strings, but you get the idea.)

Persistence complicates this picture. With object/relational persistence, a per-
sistent object is an in-memory representation of a particular row of a database
table. So, along with Java identity (memory location) and object equality, we pick
up database identity (location in the persistent data store). We now have three meth-
ods for identifying objects:

88

3.4.2

CHAPTER 3
Mapping persistent classes

= Object identity—Objects are identical if they occupy the same memory loca-
tion in the JVM. This can be checked by using the == operator.

m Object equality—Obijects are equal if they have the same value, as defined by the
equals (Object o) method. Classes that don’t explicitly override this method
inherit the implementation defined by java.lang.0bject, which compares
object identity.

m Database identity—Objects stored in a relational database are identical if they
represent the same row or, equivalently, share the same table and primary key
value.

You need to understand how database identity relates to objectidentity in Hibernate.

Database identity with Hibernate

Hibernate exposes database identity to the application in two ways:
= The value of the identifier property of a persistent instance
m The value returned by Session.getIdentifier (Object o)

The identifier property is special: Its value is the primary key value of the database
row represented by the persistent instance. We don’t usually show the identifier
property in our domain model—it’s a persistence-related concern, not part of our
business problem. In our examples, the identifier property is always named id. So
if myCategory is an instance of category, calling myCategory.get1d() returns the
primary key value of the row represented by mycategory in the database.

Should you make the accessor methods for the identifier property private scope
or public? Well, database identifiers are often used by the application as a conve-
nient handle to a particular instance, even outside the persistence layer. For exam-
ple, web applications often display the results of a search screen to the user as a list
of summary information. When the user selects a particular element, the applica-
tion might need to retrieve the selected object. It’s common to use a lookup by
identifier for this purpose—you’ve probably already used identifiers this way, even
in applications using direct JDBC. It’s therefore usually appropriate to fully expose
the database identity with a public identifier property accessor.

On the other hand, we usually declare the set1d() method private and let
Hibernate generate and set the identifier value. The exceptions to this rule are
classes with natural keys, where the value of the identifier is assigned by the appli-
cation before the object is made persistent, instead of being generated by Hiber-
nate. (We discuss natural keys in the next section.) Hibernate doesn’t allow you to
change the identifier value of a persistent instance after it’s first assigned.

Understanding object identity 89

Remember, part of the definition of a primary key is that its value should never
change. Let’s implement an identifier property for the category class:

public class Category {
private Long id;

public Long getId() {
return this.id;
}

private void setId(Long id) {
this.id = id;
}

}

The property type depends on the primary key type of the caTecory table and the
Hibernate mapping type. This information is determined by the <id> element in
the mapping document:
<class name="Category" table="CATEGORY">
<id name="id" column="CATEGORY_ID" type="long">

<generator class="native"/>
</id>

</clééé>
The identifier property is mapped to the primary key column caTeGory_1D of the
table catecory. The Hibernate type for this property is 1ong, which maps to a BIG-
INT column type in most databases and which has also been chosen to match the
type of the identity value produced by the native identifier generator. (We discuss
identifier generation strategies in the next section.) So, in addition to operations
for testing Java object identity (a == b) and object equality (a.equals(b)), you
may Now use a.getId().equals(b.getId()) to test database identity.

An alternative approach to handling database identity is to not implement any
identifier property, and let Hibernate manage database identity internally. In this
case, you omit the name attribute in the mapping declaration:

<id column="CATEGORY_ID">

<generator class="native"/>

</id>
Hibernate will now manage the identifier values internally. You may obtain the
identifier value of a persistent instance as follows:

Long catId = (Long) session.getIdentifier (category);

90

3.4.3

CHAPTER 3
Mapping persistent classes

This technique has a serious drawback: You can no longer use Hibernate to
manipulate detached objects effectively (see chapter 4, section 4.1.6, “Outside the
identity scope™). So, you should always use identifier properties in Hibernate. (If
you don’t like them being visible to the rest of your application, make the accessor
methods private.)

Using database identifiers in Hibernate is easy and straightforward. Choosing a
good primary key (and key generation strategy) might be more difficult. We dis-
cuss these issues next.

Choosing primary keys

You have to tell Hibernate about your preferred primary key generation strategy.
But first, let’s define primary key.

The candidate key is a column or set of columns that uniquely identifies a specific
row of the table. A candidate key must satisfy the following properties:

= The value or values are never null.
m Each row has a unique value or values.
m The value or values of a particular row never change.

For a given table, several columns or combinations of columns might satisfy these
properties. If a table has only one identifying attribute, it is by definition the pri-
mary key. If there are multiple candidate keys, you need to choose between them
(candidate keys not chosen as the primary key should be declared as unique keys
in the database). If there are no unique columns or unique combinations of col-
umns, and hence no candidate keys, then the table is by definition not a relation
as defined by the relational model (it permits duplicate rows), and you should
rethink your data model.

Many legacy SQL data models use natural primary keys. A natural key is a key with
business meaning: an attribute or combination of attributes that is unique by virtue
of its business semantics. Examples of natural keys might be a U.S. Social Security
Number or Australian Tax File Number. Distinguishing natural keys is simple: If a
candidate key attribute has meaning outside the database context, it’s a natural
key, whether or not it’s automatically generated.

Experience has shown that natural keys almost always cause problems in the
long run. A good primary key must be unique, constant, and required (never null
or unknown). Very few entity attributes satisfy these requirements, and some that
do aren’t efficiently indexable by SQL databases. In addition, you should make
absolutely certain that a candidate key definition could never change throughout

Understanding object identity 91

the lifetime of the database before promoting it to a primary key. Changing the
definition of a primary key and all foreign keys that refer to it is a frustrating task.

For these reasons, we strongly recommend that new applications use synthetic
identifiers (also called surrogate keys). Surrogate keys have no business meaning—
they are unique values generated by the database or application. There are a num-
ber of well-known approaches to surrogate key generation.

Hibernate has several built-in identifier generation strategies. We list the most
useful options in table 3.1.

Table 3.1 Hibernate’s built-in identifier generator modules

Generator name Description

native The native identity generator picks other identity generators like identity,
sequence, oOr hilo depending on the capabilities of the underlying database.

identity This generator supports identity columns in DB2, MySQL, MS SQL Server, Sybase,
HSQLDB, Informix, and HypersonicSQL. The returned identifier is of type long,
short, or int.

sequence A sequence in DB2, PostgreSQL, Oracle, SAP DB, McKaoi, Firebird, or a generator in
InterBase is used. The returned identifier is of type long, short, or int.

increment At Hibernate startup, this generator reads the maximum primary key column value
of the table and increments the value by one each time a new row is inserted. The
generated identifier is of type long, short, or int. This generator is especially
efficient if the single-server Hibernate application has exclusive access to the
database but shouldn’t be used in any other scenario.

hilo A high/low algorithm is an efficient way to generate identifiers of type 1ong,
short, or int, given a table and column (by default hibernate_unique_key
and next_hi, respectively) as a source of hi values. The high/low algorithm gen-
erates identifiers that are unique only for a particular database. See [Ambler
2002] for more information about the high/low approach to unique identifiers.

uuid.hex This generator uses a 128-bit UUID (an algorithm that generates identifiers of type
string, unique within a network). The IP address is used in combination with a
unique timestamp. The UUID is encoded as a string of hexadecimal digits of length
32. This generation strategy isn’t popular, since CHAR primary keys consume more
database space than numeric keys and are marginally slower.

You aren’t limited to these built-in strategies; you may create your own identifier
generator by implementing Hibernate’s TdentifierGenerator interface. It’s even
possible to mix identifier generators for persistent classes in a single domain model,
but for non-legacy data we recommend using the same generator for all classes.
The special assigned identifier generator strategy is most useful for entities with
natural primary keys. This strategy lets the application assign identifier values by

92

3.5

CHAPTER 3
Mapping persistent classes

setting the identifier property before making the object persistent by calling
save (). This strategy has some serious disadvantages when you’re working with
detached objects and transitive persistence (both of these concepts are discussed
in the next chapter). Don’t use assigned identifiers if you can avoid them; it’s
much easier to use a surrogate primary key generated by one of the strategies listed
in table 3.1.

For legacy data, the picture is more complicated. In this case, we’re often stuck
with natural keys and especially composite keys (natural keys composed of multiple
table columns). Because composite identifiers can be more difficult to work with,
we only discuss them in the context of chapter 8, section 8.3.1, “Legacy schemas
and composite keys.”

The next step is to add identifier properties to the classes of the CaveatEmptor
application. Do all persistent classes have their own database identity? To answer
this question, we must explore the distinction between entities and value types in
Hibernate. These concepts are required for fine-grained object modeling.

Fine-grained object models

A major objective of the Hibernate project is support for fine-grained object mod-
els, which we isolated as the most important requirement for a rich domain
model. It’s one reason we’ve chosen POJOS.

In crude terms, fine-grained means “more classes than tables.” For example, a
user might have both a billing address and a home address. In the database, we
might have a single user table with the columns BILLING_STREET, BILLING_CITY,
and BILLING_zIPCODE along with HOME_STREET, HOME_CITY, and HOME_ZIPCODE.
There are good reasons to use this somewhat denormalized relational model (per-
formance, for one).

In our object model, we could use the same approach, representing the two
addresses as six string-valued properties of the user class. But we would much
rather model this using an address class, where User has the billingaddress and
homeAddress properties.

This object model achieves improved cohesion and greater code reuse and is
more understandable. In the past, many ORM solutions haven’t provided good sup-
port for this kind of mapping.

Hibernate emphasizes the usefulness of fine-grained classes for implementing
type-safety and behavior. For example, many people would model an email address
as a string-valued property of user. We suggest that a more sophisticated approach

351

3.5.2

Fine-grained object models 93

is to define an actual Emailaddress class that could add higher level semantics and
behavior. For example, it might provide a sendeEmail () method.

Entity and value types

This leads us to a distinction of central importance in ORM. In Java, all classes are
of equal standing: All objects have their own identity and lifecycle, and all class
instances are passed by reference. Only primitive types are passed by value.

We’re advocating a design in which there are more persistent classes than tables.
One row represents multiple objects. Because database identity is implemented by
primary key value, some persistent objects won’t have their own identity. In effect,
the persistence mechanism implements pass-by-value semantics for some classes.
One of the objects represented in the row has its own identity, and others depend
on that.

Hibernate makes the following essential distinction:

= An object of entity type has its own database identity (primary key value). An
object reference to an entity is persisted as a reference in the database (a
foreign key value). An entity has its own lifecycle; it may exist independently
of any other entity.

= An object of value type has no database identity; it belongs to an entity, and
its persistent state is embedded in the table row of the owning entity (except
in the case of collections, which are also considered value types, as you’ll see
in chapter 6). Value types don’t have identifiers or identifier properties.
The lifespan of a value-type instance is bounded by the lifespan of the own-
ing entity.

The most obvious value types are simple objects like strings and Integers. Hiber-
nate also lets you treat a user-defined class as a value type, as you’ll see next. (We
also come back to this important concept in chapter 6, section 6.1, “Understand-
ing the Hibernate type system.”)

Using components

So far, the classes of our object model have all been entity classes with their own
lifecycle and identity. The user class, however, has a special kind of association
with the address class, as shown in figure 3.5.

In object modeling terms, this association is a kind of aggregation—a “part of”
relationship. Aggregation is a strong form of association: It has additional seman-
tics with regard to the lifecycle of objects. In our case, we have an even stronger

94

CHAPTER 3

Mapping persistent classes

User
firstname : String
lastname : String Address
username : String ‘M street : String
password : String home » zipCode : String
email : String >—— city : String
ranking : int Figure 3.5

Relationships between user and

created : Date Address Using composition

form, composition, where the lifecycle of the part is dependent on the lifecycle of
the whole.

Object modeling experts and UML designers will claim that there is no differ-
ence between this composition and other weaker styles of association when it
comes to the Java implementation. But in the context of ORM, there is a big differ-
ence: a composed class is often a candidate value type.

We now map address as a value type and User as an entity. Does this affect the
implementation of our POJO classes?

Java itself has no concept of composition—a class or attribute can’t be marked
as a component or composition. The only difference is the object identifier: A com-
ponent has no identity, hence the persistent component class requires no identi-
fier property or identifier mapping. The composition between user and Address is
a metadata-level notion; we only have to tell Hibernate that the address is a value
type in the mapping document.

Hibernate uses the term component for a user-defined class that is persisted to
the same table as the owning entity, as shown in listing 3.7. (The use of the word
component here has nothing to do with the architecture-level concept, as in soft-
ware component.)

<class
name="User"
table="USER">

<id
name="3id"
column="USER_ID"
type="long">
<generator class="native"/>
</id>

<property

Fine-grained object models

name="username"
column="USERNAME"
type="string"/>

<component

Declare persistent

name="homeAddress" " attributes
class="Address">

<property

<property

<property

</component>

<component

name="street"
type="string"
column="HOME_STREET"
notnull="true"/>
name="city"
type="string"
column="HOME_CITY"
not-null="true"/>
name="zipcode"
type="short"
column="HOME_ZIPCODE"
not-null="true"/>

Reuse

name="billingAddress" @ component class
class="Address">

<property

<property

<property

</component>

</class>

name="street"
type="string"
column="BILLING_STREET"
notnull="true" />
name="city"
type="string"
column="BILLING_CITY"
not-null="true"/>
name="zipcode"
type="short"
column="BILLING_ZIPCODE"
not-null="true"/>

95

We declare the persistent attributes of address inside the <component> element.
The property of the user class is named homeaddress.

We reuse the same component class to map another property of this type to the

same table.

96

CHAPTER 3
Mapping persistent classes

Figure 3.6 shows how the attributes of the
Address class are persisted to the same table as
the User entity.

Notice that in this example, we have modeled
the composition association as unidirectional. We
can’t navigate from address to user. Hibernate
supports both unidirectional and bidirectional
compositions; however, unidirectional composi-
tion is far more common. Here’s an example of a
bidirectional mapping:

<component
name="homeAddress"
class="Address">
<parent name="user"/>

<<Table>>

USER

USER_ID <<PK>>
USERNAME
BILLING_STREET
BILLING_ZIPCODE
BILLNG CITY
HOME_STREET
HOME_ZIPCODE

HOME_CITY

Billing
Address
Component

Home
Address
Component

Figure 3.6 Table attributes of User
with address component

<property name="street" type="string" column="HOME_STREET"/>
<property name="city" type="string" column="HOME_CITY"/>
<property name="zipcode" type="short" column="HOME_ZIPCODE"/>

</component>

The <parent> element maps a property of type user to the owning entity, in this
example, the property is named user. We then call address.getUser () to navigate

in the other direction.

A Hibernate component may own other components and even associations to
other entities. This flexibility is the foundation of Hibernate’s support for fine-
grained object models. (We’ll discuss various component mappings in chapter 6.)

However, there are two important limitations to classes mapped as components:

m Shared references aren’t possible. The component address doesn’t have its
own database identity (primary key) and so a particular address object can’t
be referred to by any object other than the containing instance of user.

m There is no elegant way to represent a null reference to an Address. In lieu
of an elegant approach, Hibernate represents null components as null val-
ues in all mapped columns of the component. This means that if you store a
component object with all null property values, Hibernate will return a null
component when the owning entity object is retrieved from the database.

Support for fine-grained classes isn’t the only ingredient of a rich domain model.
Class inheritance and polymorphism are defining features of object-oriented

models.

3.6

3.6.1

Mapping class inheritance 97

Mapping class inheritance

A simple strategy for mapping classes to database tables might be “one table for
every class.” This approach sounds simple, and it works well until you encoun-
ter inheritance.

Inheritance is the most visible feature of the structural mismatch between the
object-oriented and relational worlds. Object-oriented systems model both “is a”
and “has a” relationships. SQL-based models provide only “has a” relationships
between entities.

There are three different approaches to representing an inheritance hierarchy.
These were catalogued by Scott Ambler [Ambler 2002] in his widely read paper
“Mapping Objects to Relational Databases”:

m Table per concrete class—Discard polymorphism and inheritance relationships
completely from the relational model

m Table per class hierarchy—Enable polymorphism by denormalizing the rela-
tional model and using a type discriminator column to hold type information

m Table per subclass—Represent “is a” (inheritance) relationships as “has a”
(foreign key) relationships

This section takes a top down approach; it assumes that we’re starting with a
domain model and trying to derive a new SQL schema. However, the mapping
strategies described are just as relevant if we’re working bottom up, starting with
existing database tables.

Table per concrete class

Suppose we stick with the simplest approach: We could use exactly one table for
each (non-abstract) class. All properties of a class, including inherited properties,
could be mapped to columns of this table, as shown in figure 3.7.

The main problem with this approach is that it doesn’t support polymorphic
associations very well. In the database, associations are usually represented as for-
eign key relationships. In figure 3.7, if the subclasses are all mapped to different
tables, a polymorphic association to their superclass (abstract BillingDetails in
this example) can’t be represented as a simple foreign key relationship. This would
be problematic in our domain model, because BillingDetails is associated with
User; hence both tables would need a foreign key reference to the user table.

Polymorphic queries (queries that return objects of all classes that match the inter-
face of the queried class) are also problematic. A query against the superclass must

98

CHAPTER 3
Mapping persistent classes

BillingDetails
owner : String <<Table>> <<Table>>
number: String CREDIT_CARD BANK_ACCOUNT
created : Date CREDIT_CARD_ID <<PK>> BANK_ACCOUNT_ID <<PK>>
4& OWNER OWNER
| | NUMBER NUMBER
. CREATED
CreditCard BankAccount CREATED
i ; TYPE BANK_NAME
type : int bankName: String EXP MONTH BANK_SmnFT
expMonth : String | | bankSwift: String - -
) EXP_YEAR
expYear : String

Figure 3.7 Mapping a composition bidirectional

be executed as several SQL seLECTS, one for each concrete subclass. We might be
able to use an SQL un1ON to improve performance by avoiding multiple round trips
to the database. However, unions are somewhat nonportable and otherwise diffi-
cult to work with. Hibernate doesn’t support the use of unions at the time of writ-
ing, and will always use multiple SQL queries. For a query against the
BillingDetails class (for example, restricting to a certain date of creation), Hiber-
nate would use the following SQL:
select CREDIT_CARD_ID, OWNER, NUMBER, CREATED, TYPE,

from CREDIT_CARD
where CREATED = ?

select BANK_ACCOUNT_ID, OWNER, NUMBER, CREATED, BANK_NAME,

from BANK_ACCOUNT

where CREATED = °?
Notice that a separate query is needed for each concrete subclass.

On the other hand, queries against the concrete classes are trivial and perform
well;

select CREDIT_CARD_ID, TYPE, EXP_MONTH, EXP_YEAR

from CREDIT_CARD where CREATED = ?

(Note that here, and in other places in this book, we show SQL that is conceptually
identical to the SQL executed by Hibernate. The actual SQL might look superfi-
cially different.)

A further conceptual problem with this mapping strategy is that several different
columns of different tables share the same semantics. This makes schema evolu-
tion more complex. For example, a change to a superclass property type results in

3.6.2

Mapping class inheritance 99

changes to multiple columns. It also makes it much more difficult to implement
database integrity constraints that apply to all subclasses.

This mapping strategy doesn’t require any special Hibernate mapping declara-
tion: Simply create a new <class> declaration for each concrete class, specifying a
different table attribute for each. We recommend this approach (only) for the top
level of your class hierarchy, where polymorphism isn’t usually required.

Table per class hierarchy

Alternatively, an entire class hierarchy could be mapped to a single table. This
table would include columns for all properties of all classes in the hierarchy. The
concrete subclass represented by a particular row is identified by the value of a
type discriminator column. This approach is shown in figure 3.8.

This mapping strategy is a winner in terms of both performance and simplicity.
It’s the best-performing way to represent polymorphism—both polymorphic and
nonpolymorphic queries perform well—and it’s even easy to implement by hand.
Ad hoc reporting is possible without complex joins or unions, and schema evolu-
tion is straightforward.

There is one major problem: Columns for properties declared by subclasses
must be declared to be nullable. If your subclasses each define several non-nullable
properties, the loss of NoT NULL constraints could be a serious problem from the
point of view of data integrity.

In Hibernate, we use the <subclass> element to indicate a table-per-class hier-
archy mapping, as in listing 3.8.

BillingDetails

owner : String

<<Table>>

BILLING_DETAILS

BILLING_DETAILS_ID <<PK>>
BILLING_DETAILS_TYPE <<Discriminator>>

number: String

created : Date

4& OWNER
> | NUMBER
| | CREATED
CreditCard BankAccount CREDIT_CARD_TYPE
— o CREDIT_CARD_EXP_MONTH
type : int bankName: String CREDIT_CARD_EXP_YEAR
expMonth : String [| bankSwift: String BANK_ACCOUNT_BANK_NAME

expYear : String

Figure 3.8 Table per class hierarchy mapping

BANK_ACCOUNT_BANK_SWIFT

100 CHAPTER 3
Mapping persistent classes

Listing 3.8 Hibernate <subclass> mapping
<hibernate-mapping> !' Root class, mapped to table
<class

name="BillingDetails"
table="BILLING_DETAILS" discriminator-value="BD">
<id
name="1id"
column="BILLING_DETAILS_ID"
type="long">
<generator class="native"/>
</id>

9 Discriminator column
<discriminator

column="BILLING_DETAILS_TYPE"
type="string" />
Property mappings
<property
name="name"
column="OWNER"
type="string" />

o S’ CreditCard subclass
<subclass

name="CreditCard"
discriminator-value="CC">

<property
name="type"
column="CREDIT_CARD_TYPE" />

</subclass>

</class>
</hibernate-mapping>

© The root class BusinessDetails of the inheritance hierarchy is mapped to the
table BUSINESS_DETATLS.

® We have to use a special column to distinguish between persistent classes: the dis-
criminator. This isn’t a property of the persistent class; it’s used internally by Hiber-
nate. The column name is BILLING_DETAILS_TYPE, and the values will be strings—
in this case, "cc" or "Ba". Hibernate will automatically set and retrieve the dis-
criminator values.

© Properties of the superclass are mapped as always, with a <property> element.

o

3.6.3

Mapping class inheritance 101

Every subclass has its own <subclass> element. Properties of a subclass are
mapped to columns in the BILLING_DETATLS table. Remember that not-null con-
straints aren’t allowed, because a creditcard instance won’t have a bankSwift
property and the Bank_accounT_ank_swIFT field must be null for that row.

The <subclass> element can in turn contain other <subclass> elements, until
the whole hierarchy is mapped to the table. A <subclass> element can’t contain a
<joined-subclass> element. (The <joined-subclass> element is used in the spec-
ification of the third mapping option: one table per subclass. This option is dis-
cussed in the next section.) The mapping strategy can’t be switched anymore at
this point.

Hibernate would use the following SQL when querying the BillingDetails class:

select BILLING_DETAILS_ID, BILLING_DETAILS_TYPE,
OWNER, ..., CREDIT _CARD_TYPE,
from BILLING_DETAILS
where CREATED = ?
To query the creditcard subclass, Hibernate would use a condition on the dis-
criminator:
select BILLING_DETAILS_ID,
CREDIT_CARD_TYPE, CREDIT_CARD_EXP_MONTH,

from BILLING_DETAILS
where BILLING_DETAILS_TYPE='CC' and CREATED = ?

How could it be any simpler than that?

Table per subclass

The third option is to represent inheritance relationships as relational foreign key
associations. Every subclass that declares persistent properties—including abstract
classes and even interfaces—has its own table.

Unlike the strategy that uses a table per concrete class, the table here contains
columns only for each non-inherited property (each property declared by the sub-
class itself) along with a primary key that is also a foreign key of the superclass table.
This approach is shown in figure 3.9.

If an instance of the creditcard subclass is made persistent, the values of prop-
erties declared by the BillingDetails superclass are persisted to a new row of the
BILLING_DETAILS table. Only the values of properties declared by the subclass are
persisted to the new row of the crRepIT carD table. The two rows are linked together
by their shared primary key value. Later, the subclass instance may be retrieved
from the database by joining the subclass table with the superclass table.

102

CHAPTER 3
Mapping persistent classes

BillingDetails

owner : String
number: String
created : Date

JA

CreditCard

BankAccount

type :int
expMonth : String

expYear : String

bankName: String
bankSwift: String

{

Table per Subclass

<<Table>>

BILLING_DETAILS

BILLING_DETAILS_ID <<PK>>

OWNER
NUMBER
CREATED
<<Table>> <<Table>>
CREDIT_CARD BANK_ACCOUNT

CREDIT_CARD_ID <<PK>> <<FK>>
TYPE

EXP_MONTH

EXP_YEAR

Figure 3.9 Table per subclass mapping

The primary advantage of this strategy is that the relational model is completely
normalized. Schema evolution and integrity constraint definition are straightfor-
ward. A polymorphic association to a particular subclass may be represented as a

BANK_ACCOUNT_ID <<PK>> <<FK>>
BANK_NAME
BANK_SWIFT

foreign key pointing to the table of that subclass.

In Hibernate, we use the <joined-subclass> element to indicate a table-per-sub-
class mapping (see listing 3.9).

Listing 3.9 Hibernate <joined-subclass> mapping

<?xml version="1.0"?><hibernate-mapping>

<class <

name="BillingDetails"
table="BILLING_DETAILS">

6 BillingDetails root class,
mapped to
BILLING_DETAILS table

Mapping class inheritance 103

<id
name="id"
column="BILLING_DETAILS_ID"
type="long">
<generator class="native"/>
</id>

<property
name="owner"
column="OWNER"
type="string"/>

T J <joined-subclass=>
<joined-subclass element

name="CreditCard"
table="CREDIT_CARD">

<key column="CREDIT_CARD_ID">
<property 6 Primary/foreign key

name="type"
column="TYPE" />

</joined-subclass>

</class>
</hibernate-mapping>

© Again, the root class BillingDetails is mapped to the table BILLING_DETAILS.
Note that no discriminator is required with this strategy.

® The new <joined-subclass> element is used to map a subclass to a new table (in
this example, creprT_carD). All properties declared in the joined subclass will be
mapped to this table. Note that we intentionally left out the mapping example for
BankAccount, Which is similar to creditcard.

© A primary key is required for the creprT_carD table; it will also have a foreign key
constraint to the primary key of the BILLING_DETAILS table. A creditcard object
lookup will require a join of both tables.

A <joined-subclass> element may contain other <joined-subclass> elements
but not a <subclass> element. Hibernate doesn’t support mixing of these two
mapping strategies.

Hibernate will use an outer join when querying the BillingDetails class:

104

3.64

CHAPTER 3
Mapping persistent classes

select BD.BILLING_DETAILS_ID, BD.OWNER, BD.NUMER, BD.CREATED,
CC.TYPE, ..., BA.BANK_SWIFT,
case
when CC.CREDIT_CARD_ID is not null then 1
when BA.BANK_ACCOUNT_ID is not null then 2
when BD.BILLING_DETAILS_ID is not null then 0
end as TYPE
from BILLING_DETAILS BD
left join CREDIT_CARD CC on
BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
left join BANK_ACCOUNT BA on
BD.BILLING_DETAILS_ID = BA.BANK_ACCOUNT_ID

where BD.CREATED = ?

The SQL case statement uses the existence (or nonexistence) of rows in the sub-
class tables crepIT carD and BAaNK_ACCOUNT to determine the concrete subclass for
a particular row of the BILLING_DETAILS table.

To narrow the query to the subclass, Hibernate uses an inner join instead:

select BD.BILLING_DETAILS_ID, BD.OWNER, BD.CREATED, CC.TYPE,

from CREDIT_CARD CC

inner join BILLING_DETAILS BD on
BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID

where CC.CREATED = ?

As you can see, this mapping strategy is more difficult to implement by hand—
even ad hoc reporting will be more complex. This is an important consideration if
you plan to mix Hibernate code with handwritten SQL/JDBC. (For ad hoc report-
ing, database views provide a way to offset the complexity of the table-per-subclass
strategy. A view may be used to transform the table-per-subclass model into the
much simpler table-per-hierarchy model.)

Furthermore, even though this mapping strategy is deceptively simple, our
experience is that performance may be unacceptable for complex class hierar-
chies. Queries always require either a join across many tables or many sequential
reads. Our problem should be recast as how to choose an appropriate combination
of mapping strategies for our application’s class hierarchies. A typical domain
model design has a mix of interfaces and abstract classes.

Choosing a strategy

You can apply all mapping strategies to abstract classes and interfaces. Interfaces
may have no state but may contain accessor method declarations, so they can be
treated like abstract classes. You can map an interface using <class>, <subclass>,
Or <joined-subclass>; and you can map any declared or inherited property using

3.7

Introducing associations 105

<property>. Hibernate won’t try to instantiate an abstract class, however, even if
you query or load it.
Here are some rules of thumb:

= If you don’t require polymorphic associations or queries, lean toward the
table-per-concrete-class strategy. If you require polymorphic associations
(an association to a superclass, hence to all classes in the hierarchy with
dynamic resolution of the concrete class at runtime) or queries, and sub-
classes declare relatively few properties (particularly if the main difference
between subclasses is in their behavior), lean toward the table-per-class-hier-
archy model.

= If you require polymorphic associations or queries, and subclasses declare
many properties (subclasses differ mainly by the data they hold), lean
toward the table-per-subclass approach.

By default, choose table-per-class-hierarchy for simple problems. For more com-
plex cases (or when you’re overruled by a data modeler insisting upon the impor-
tance of nullability constraints), you should consider the table-per-subclass
strategy. But at that point, ask yourself whether it might be better to remodel
inheritance as delegation in the object model. Complex inheritance is often best
avoided for all sorts of reasons unrelated to persistence or ORM. Hibernate acts as
a buffer between the object and relational models, but that doesn’t mean you can
completely ignore persistence concerns when designing your object model.

Note that you may also use <subclass> and <joined-subclass> mapping ele-
ments in a separate mapping file (as a top-level element, instead of <class>). You
then have to declare the class that is extended (for example, <subclass
name="CreditCard" extends="BillingDetails">), and the superclass mapping
must be loaded before the subclass mapping file. This technique allows you to
extend a class hierarchy without modifying the mapping file of the superclass.

You have now seen the intricacies of mapping an entity in isolation. In the next
section, we turn to the problem of mapping associations between entities, which is
another major issue arising from the object/relational paradigm mismatch.

Introducing associations

Managing the associations between classes and the relationships between tables is
the soul of ORM. Most of the difficult problems involved in implementing an ORM
solution relate to association management.

106

3.7.1

3.7.2

CHAPTER 3
Mapping persistent classes

The Hibernate association model is extremely rich but is not without pitfalls,
especially for new users. In this section, we won’t try to cover all the possible
combinations. What we’ll do is examine certain cases that are extremely com-
mon. We return to the subject of association mappings in chapter 6, for a more
complete treatment.

But first, there’s something we need to explain up front.

Managed associations?

If you’ve used CMP 2.0/2.1, you’re familiar with the concept of a managed associa-
tion (or managed relationship). CMP associations are called container-managed
relationships (CMRs) for a reason. Associations in CMP are inherently bidirec-
tional: A change made to one side of an association is instantly reflected at the
other side. For example, if we call bid.setItem(item), the container automatically
calls item.getBids () .add (item).

Transparent POJO-oriented persistence implementations such as Hibernate do
not implement managed associations. Contrary to CMR, Hibernate associations are
all inherently unidirectional. As far as Hibernate is concerned, the association from
Bid to Item is a different association than the association from 1tem to Bid.

To some people, this seems strange; to others, it feels completely natural. After
all, associations at the Java language level are always unidirectional—and Hiber-
nate claims to implement persistence for plain Java objects. We’ll merely observe
that this decision was made because Hibernate objects, unlike entity beans, are
not assumed to be always under the control of a container. In Hibernate applica-
tions, the behavior of a non-persistent instance is the same as the behavior of a
persistent instance.

Because associations are so important, we need a very precise language for clas-
sifying them.

Multiplicity
In describing and classifying associations, we’ll almost always use the association

multiplicity. Look at figure 3.10.
For us, the multiplicity is just two bits of information:

m Can there be more than one Bid for a particular rtem?
m Can there be more than one 1tem for a particular Bid?

* Figure 3.10
Relationship between Item and Bid

3.7.3

Introducing associations 107

After glancing at the object model, we conclude that the association from Bid to
Item iS @ many-to-one association. Recalling that associations are directional, we
would also call the inverse association from Item to Bid a one-to-many association.
(Clearly, there are two more possibilities: many-to-many and one-to-one; we’ll get
back to these possibilities in chapter 6.)
In the context of object persistence, we aren’t interested in whether “many”
really means “two” or “maximum of five” or “unrestricted.”

The simplest possible association

The association from Bid to Item is an example of the simplest possible kind of
association in ORM. The object reference returned by getItem() is easily mapped
to a foreign key column in the B1D table. First, here’s the Java class implementa-
tion of Bia:

public class Bid {

private Item item;

public void setItem(Item item) {
this.item = item;

}

public Item getItem() {
return item;

}

}
Next, here’s the Hibernate mapping for this association:

<class
name="Bid"
table="BID">

<many-to-one
name="item"
column="ITEM_ID"
class="Item"
not-null="true"/>

</class>

This mapping is called a unidirectional many-to-one association. The column ITEM_ID
in the B1ID table is a foreign key to the primary key of the 1TEM table.

108 CHAPTER 3
Mapping persistent classes

We have explicitly specified the class, 1tem, that the association refers to. This
specification is usually optional, since Hibernate can determine this using
reflection.

We specified the not-null attribute because we can’t have a bid without an
item. The not-null attribute doesn’t affect the runtime behavior of Hibernate; it
exists mainly to control automatic data definition language (DDL) generation
(see chapter 9).

3.7.4 Making the association bidirectional

So far so good. But we also need to be able to easily fetch all the bids for a particu-
lar item. We need a bidirectional association here, so we have to add scaffolding
code to the Item class:

public class Item {

private Set bids = new HashSet () ;

public void setBids(Set bids) {
this.bids = bids;
}

public Set getBids() {
return bids;

}

public void addBid(Bid bid) {
bid.setItem(this);
bids.add(bid) ;

}

You can think of the code in addsid() (a convenience method) as implementing
a managed association in the object model.

A basic mapping for this one-to-many association would look like this:

<class

name="Item"
table="ITEM" >

<set name="bids">
<key column="ITEM_ID"/>
<one-to-many class="Bid"/>
</set>

</class>

Introducing associations 109

The column mapping defined by the <key> element is a foreign key column of the
associated BID table. Notice that we specify the same foreign key column in this
collection mapping that we specified in the mapping for the many-to-one associa-
tion. The table structure for this association mapping is shown in figure 3.11.

<<Table>> :
ITEM <<Table>>

BID
BID_ID <<PK>>

ITEM_ID <<PK>>

NAME
ITEM_ID <<FK>>

DESCRIPTION AMOGNT .

INITIAL_PRICE Figure 3.11

Table relationships and keys for a
one-to-many/many-to-one mapping

Now we have two different unidirectional associations mapped to the same for-
eign key, which poses a problem. At runtime, there are two different in-memory
representations of the same foreign key value: the item property of Bid and an ele-
ment of the bids collection held by an Ttem. Suppose our application modifies the
association by, for example, adding a bid to an item in this fragment of the
addBid () method:

bid.setItem(item) ;

bids.add(bid) ;

This code is fine, but in this situation, Hibernate detects two different changes to
the in-memory persistent instances. From the point of view of the database, just
one value must be updated to reflect these changes: the 1TeEM_1D column of the
BID table. Hibernate doesn’t transparently detect the fact that the two changes refer to the
same database column, since at this point we’ve done nothing to indicate that this is a bidi-
rectional association.

We need one more thing in our association mapping to tell Hibernate to treat
this as a bidirectional association: The inverse attribute tells Hibernate that the
collection is a mirror image of the many-to-one association on the other side:

<class

name="Item"
table="ITEM">

<set
name="bids"
inverse="true">

<key column="ITEM_ ID"/>

110

CHAPTER 3
Mapping persistent classes

<one-to-many class="Bid"/>
</set>
</class>

Without the inverse attribute, Hibernate would try to execute two different SQL
statements, both updating the same foreign key column, when we manipulate the
association between the two instances. By specifying inverse="true", we explicitly
tell Hibernate which end of the association it should synchronize with the data-
base. In this example, we tell Hibernate that it should propagate changes made
at the Bid end of the association to the database, ignoring changes made only to
the bids collection. Thus if we only call item.getBids () .add(bid), No changes
will be made persistent. This is consistent with the behavior in Java without
Hibernate: If an association is bidirectional, you have to create the link on two
sides, not just one.

We now have a working bidirectional many-to-one association (which could also be
called a bidirectional one-to-many association, of course).

One final piece is missing. We explore the notion of transitive persistence in
much greater detail in the next chapter. For now, we’ll introduce the concepts of
cascading save and cascading delete, which we need in order to finish our mapping
of this association.

When we instantiate a new Bid and add it to an 1tem, the bid should become per-
sistent immediately. We would like to avoid the need to explicitly make a Bid per-
sistent by calling save () on the session interface.

We make one final tweak to the mapping document to enable cascading save:

<class

name="Item"
table="ITEM">

<set
name="bids"
inverse="true"
cascade="save-update">

<key column="ITEM_ID"/>
<one-to-many class="Bid"/>

</set>
</class>

The cascade attribute tells Hibernate to make any new Bid instance persistent
(that is, save it in the database) if the Bid is referenced by a persistent Ttem.

3.75

Introducing associations 111

The cascade attribute is directional: It applies to only one end of the association.
We could also specify cascade="save-update" for the many-to-one association
declared in the mapping for Bid, but doing so would make no sense in this case
because Bids are created after Items.

Are we finished? Not quite. We still need to define the lifecycle for both entities
in our association.

A parent/child relationship

With the previous mapping, the association between Bid and 1tem is fairly loose.
We would use this mapping in a real system if both entities had their own lifecycle
and were created and removed in unrelated business processes. Certain associa-
tions are much stronger than this; some entities are bound together so that their
lifecycles aren’t truly independent. In our example, it seems reasonable that dele-
tion of an item implies deletion of all bids for the item. A particular bid instance
references only one item instance for its entire lifetime. In this case, cascading
both saves and deletions makes sense.

If we enable cascading delete, the association between 1tem and Bid is called a
parent/child relationship. In a parent/child relationship, the parent entity is respon-
sible for the lifecycle of its associated child entities. This is the same semantics as a
composition (using Hibernate components), but in this case only entities are
involved; Bid isn’t a value type. The advantage of using a parent/child relationship
is that the child may be loaded individually or referenced directly by another entity.
A bid, for example, may be loaded and manipulated without retrieving the owning
item. It may be stored without storing the owning item at the same time. Further-
more, we reference the same Bid instance in a second property of Item, the single
successfulBid (see figure 3.2, page 63). Objects of value type can’t be shared.

To remodel the 1tem to Bid association as a parent/child relationship, the only
change we need to make is to the cascade attribute:

<class
name="Item"
table="ITEM">

<set
name="bids"
inverse="true"
cascade="all-delete-orphan">

<key column="ITEM_ID"/>
<one-to-many class="Bid"/>

</set>

</class>

112

3.8

CHAPTER 3
Mapping persistent classes

We used cascade="all-delete-orphan" to indicate the following:

= Any newly instantiated Bid becomes persistent if the Bid is referenced by a
persistent Ttem (as was also the case with cascade="save-update"). Any per-
sistent Bid should be deleted if it’s referenced by an 1tem when the item is
deleted.

m Any persistent Bid should be deleted if it’s removed from the bids collec-
tion of a persistent 1tem. (Hibernate will assume that it was only referenced
by this item and consider it an orphan.)

We have achieved with the following with this mapping: A Bid is removed from
the database if it’s removed from the collection of Bids of the Item (Or it’s
removed if the Item itself is removed).

The cascading of operations to associated entities is Hibernate’s implementa-
tion of transitive persistence. We look more closely at this concept in chapter 4, sec-
tion 4.3, “Using transitive persistence in Hibernate.”

We have covered only a tiny subset of the association options available in Hiber-
nate. However, you already have enough knowledge to be able to build entire
applications. The remaining options are either rare or are variations of the associ-
ations we have described.

We recommend keeping your association mappings simple, using Hibernate
gueries for more complex tasks.

Summary

In this chapter, we have focused on the structural aspect of the object/relational
paradigm mismatch and have discussed the first four generic ORM problems. We
discussed the programming model for persistent classes and the Hibernate ORM
metadata for fine-grained classes, object identity, inheritance, and associations.

You now understand that persistent classes in a domain model should be free of
cross-cutting concerns such as transactions and security. Even persistence-related
concerns shouldn’t leak into the domain model. We no longer entertain the use
of restrictive programming models such as EJB entity beans for our domain model.
Instead, we use transparent persistence, together with the unrestrictive POJO pro-
gramming model—which is really a set of best practices for the creation of properly
encapsulated Java types.

Hibernate requires you to provide metadata in XML text format. You use this
metadata to define the mapping strategy for all your persistent classes (and tables).
We created mappings for classes and properties and looked at class association

Summary 113

mappings. You saw how to implement the three well-known inheritance-mapping
strategies in Hibernate.

You also learned about the important differences between entities and value-
typed objects in Hibernate. Entities have their own identity and lifecycle, whereas
value-typed objects are dependent on an entity and are persisted with by-value
semantics. Hibernate allows fine-grained object models with fewer tables than
persistent classes.

Finally, we have implemented and mapped our first parent/child association
between persistent classes, using database foreign key fields and the cascading of
operations full stop.

In the next chapter, we investigate the dynamic aspects of the object/relational
mismatch, including a much deeper study of the cascaded operations we intro-
duced and the lifecycle of persistent objects.

Working with
persistent-objects

This chapter covers

The lifecycle of objects in a
Hibernate application

Using the session persistence manager
Transitive persistence
Efficient fetching strategy

114

4.1

The persistence lifecycle 115

You now have an understanding of how Hibernate and ORM solve the static aspects
of the object/relational mismatch. With what you know so far, it’s possible to solve
the structural mismatch problem, but an efficient solution to the problem requires
something more. We must investigate strategies for runtime data access, since
they’re crucial to the performance of our applications. You need to learn how to
efficiently store and load objects.

This chapter covers the behavioral aspect of the object/relational mismatch,
listed in chapter 1 as the last four O/R mapping problems described in
section 1.4.2. We consider these problems to be at least as important as the struc-
tural problems discussed in chapter 3. In our experience, many developers are
only aware of the structural mismatch and rarely pay attention to the more
dynamic behavioral aspects of the mismatch.

In this chapter, we discuss the lifecycle of objects—how an object becomes per-
sistent, and how it stops being considered persistent—and the method calls and
other actions that trigger these transitions. The Hibernate persistence manager,
the session, is responsible for managing object state, so you’ll learn how to use this
important API.

Retrieving object graphs efficiently is another central concern, so we introduce
the basic strategies in this chapter. Hibernate provides several ways to specify que-
ries that return objects without losing much of the power inherent to SQL. Because
network latency caused by remote access to the database can be an important lim-
iting factor in the overall performance of Java applications, you must learn how to
retrieve a graph of objects with a minimal number of database hits.

Let’s start by discussing objects, their lifecycle, and the events that trigger a
change of persistent state. These basics will give you the background you need
when working with your object graph, so you’ll know when and how to load and
save your objects. The material might be formal, but a solid understanding of the
persistence lifecycle is essential.

The persistence lifecycle

Since Hibernate is a transparent persistence mechanism—classes are unaware of
their own persistence capability—it’s possible to write application logic that is
unaware of whether the objects it operates on represent persistent state or tempo-
rary state that exists only in memory. The application shouldn’t necessarily need to
care that an object is persistent when invoking its methods.

However, in any application with persistent state, the application must interact
with the persistence layer whenever it needs to propagate state held in memory to

116

41.1

CHAPTER 4
Working with persistent objects

the database (or vice versa). To do this, you call Hibernate’s persistence manager
and query interfaces. When interacting with the persistence mechanism that way,
it’s necessary for the application to concern itself with the state and lifecycle of an
object with respect to persistence. We’ll refer to this as the persistence lifecycle.

Different ORM implementations use different terminology and define different
states and state transitions for the persistence lifecycle. Moreover, the object states
used internally might be different from those exposed to the client application.
Hibernate defines only three states, hiding the complexity of its internal imple-
mentation from the client code. In this section, we explain these three states: tran-
sient, persistent, and detached.

Let’s look at these states and their transitions in a state chart, shown in
figure 4.1. You can also see the method calls to the persistence manager that trig-
ger transitions. We discuss this chart in this section; refer to it later whenever you
need an overview.

In its lifecycle, an object can transition from a transient object to a persistent
object to a detached object. Let’s take a closer look at each of these states.

Transient objects

In Hibernate, objects instantiated using the new operator aren’t immediately per-
sistent. Their state is transient, which means they aren’t associated with any database
table row, and so their state is lost as soon as they’re dereferenced (no longer ref-
erenced by any other object) by the application. These objects have a lifespan that

new .
Transient . -
\\
\

get() save() ‘;
load() saveOrUpdate() delete() 1 garbage
find() E
iterate() |
etc. \V
Persistent @
. /\
evict() |
close() * update() |
clear() * saveOrUpdate()
lock() I garbage

Detached }--------~ - Figure 4.1
States of an object and

transitions in a Hibernate
* affects all instances in a Session application

4.1.2

The persistence lifecycle 117

effectively ends at that time, and they become inaccessible and available for gar-
bage collection.

Hibernate considers all transient instances to be nontransactional; a modifica-
tion to the state of a transient instance isn’t made in the context of any transaction.
This means Hibernate doesn’t provide any rollback functionality for transient
objects. (In fact, Hibernate doesn’t roll back any object changes, as you’ll see later.)

Objects that are referenced only by other transient instances are, by default, also
transient. For an instance to transition from transient to persistent state requires
either a save () call to the persistence manager or the creation of a reference from
an already persistent instance.

Persistent objects

A persistent instance is any instance with a database identity, as defined in chapter 3,
section 3.4, “Understanding object identity.” That means a persistent instance has
a primary key value set as its database identifier.

Persistent instances might be objects instantiated by the application and then
made persistent by calling the save () method of the persistence manager (the
Hibernate session, discussed in more detail later in this chapter). Persistent
instances are then associated with the persistence manager. They might even be
objects that became persistent when a reference was created from another persis-
tent object already associated with a persistence manager. Alternatively, a persistent
instance might be an instance retrieved from the database by execution of a query,
by an identifier lookup, or by navigating the object graph starting from another
persistent instance. In other words, persistent instances are always associated with
a Session and are transactional.

Persistent instances participate in transactions—their state is synchronized
with the database at the end of the transaction. When a transaction commits,
state held in memory is propagated to the database by the execution of SQL
INSERT, UPDATE, and DELETE Statements. This procedure might also occur at other
times. For example, Hibernate might synchronize with the database before exe-
cution of a query. This ensures that queries will be aware of changes made earlier
during the transaction.

We call a persistent instance new if it has been allocated a primary key value but
has not yet been inserted into the database. The new persistent instance will
remain “new” until synchronization occurs.

Of course, you don’t update the database row of every persistent object in mem-
ory at the end of the transaction. ORM software must have a strategy for detecting
which persistent objects have been modified by the application in the transaction.

118

4.1.3

CHAPTER 4
Working with persistent objects

We call this automatic dirty checking (an object with modifications that haven’t yet
been propagated to the database is considered dirty). Again, this state isn’t visible
to the application. We call this feature transparent transaction-level write-behind, mean-
ing that Hibernate propagates state changes to the database as late as possible but
hides this detail from the application.

Hibernate can detect exactly which attributes have been modified, so it’s possi-
ble to include only the columns that need updating in the SQL UPDATE statement.
This might bring performance gains, particularly with certain databases. However,
it isn’t usually a significant difference, and, in theory, it could harm performance
in some environments. So, by default, Hibernate includes all columns in the SQL
UPDATE statement (hence, Hibernate can generate this basic SQL at startup, not at
runtime). If you only want to update modified columns, you can enable dynamic
SQL generation by setting dynamic-update="true" in a class mapping. (Note that
this feature is extremely difficult to implement in a handcoded persistence layer.)
We talk about Hibernate’s transaction semantics and the synchronization process
(known as flushing) in more detail in the next chapter.

Finally, a persistent instance may be made transientviaa delete() call to the per-
sistence manager API, resulting in deletion of the corresponding row of the data-
base table.

Detached objects

When a transaction completes, the persistent instances associated with the persis-
tence manager still exist. (If the transaction were successful, their in-memory state
will have been synchronized with the database.) In ORM implementations with
process-scoped identity (see the following sections), the instances retain their associa-
tion to the persistence manager and are still considered persistent.

In the case of Hibernate, however, these instances lose their association with the
persistence manager when you close() the Session. We refer to these objects as
detached, indicating that their state is no longer guaranteed to be synchronized with
database state; they’re no longer under the management of Hibernate. However,
they still contain persistent data (that may possibly soon be stale). It’s possible (and
common) for the application to retain a reference to a detached object outside of
a transaction (and persistence manager). Hibernate lets you reuse these instances
in a new transaction by reassociating them with a new persistence manager. (After
reassociation, they’re considered persistent.) This feature has a deep impact on
how multitiered applications may be designed. The ability to return objects from
one transaction to the presentation layer and later reuse them in a new transaction

4.1.4

The persistence lifecycle 119

is one of Hibernate’s main selling points. We discuss this usage in the next chapter
as an implementation technique for long-running application transactions. We also
show you how to avoid the DTO (anti-) pattern by using detached objects in chap-
ter 8, in the section “Rethinking data transfer objects.”

Hibernate also provides an explicit detachment operation: the evict () method
of the session. However, this method is typically used only for cache management
(a performance consideration). It’s not normal to perform detachment explicitly.
Rather, all objects retrieved in a transaction become detached when the session is
closed or when they’re serialized (if they’re passed remotely, for example). So,
Hibernate doesn’t need to provide functionality for controlling detachment of sub-
graphs. Instead, the application can control the depth of the fetched subgraph (the
instances that are currently loaded in memory) using the query language or
explicit graph navigation. Then, when the session is closed, this entire subgraph
(all objects associated with a persistence manager) becomes detached.

Let’s look at the different states again but this time consider the scope of object
identity.

The scope of object identity

As application developers, we identify an object using Java object identity (a==b).
So, if an object changes state, is its Java identity guaranteed to be the same in the
new state? In a layered application, that might not be the case.

In order to explore this topic, it’s important to understand the relationship
between Java identity, a==b, and database identity, a.getId() .equals(b.getId()).
Sometimes both are equivalent; sometimes they aren’t. We refer to the conditions
underwhich Javaidentity is equivalent to database identity as the scope of object identity.

For this scope, there are three common choices:

m A primitive persistence layer with no identity scope makes no guarantees that
if a row is accessed twice, the same Java object instance will be returned to
the application. This becomes problematic if the application modifies two
different instances that both represent the same row in a single transaction
(how do you decide which state should be propagated to the database?).

m A persistence layer using transaction-scoped identity guarantees that, in the
context of a single transaction, there is only one object instance that repre-
sents a particular database row. This avoids the previous problem and also
allows for some caching to be done at the transaction level.

m Process-scoped identity goes one step further and guarantees that there is only
one object instance representing the row in the whole process (JVM).

120

CHAPTER 4
Working with persistent objects

For a typical web or enterprise application, transaction-scoped identity is pre-
ferred. Process-scoped identity offers some potential advantages in terms of cache
utilization and the programming model for reuse of instances across multiple
transactions; however, in a pervasively multithreaded application, the cost of always
synchronizing shared access to persistent objects in the global identity map is too
high a price to pay. It’s simpler, and more scalable, to have each thread work with
a distinct set of persistent instances in each transaction scope.

Speaking loosely, we would say that Hibernate implements transaction-scoped
identity. Actually, the Hibernate identity scope is the session instance, so identical
objects are guaranteed if the same persistence manager (the session) is used for
several operations. But a session isn’t the same as a (database) transaction—it’s a
much more flexible element. We’ll explore the differences and the consequences
of this concept in the next chapter. Let’s focus on the persistence lifecycle and
identity scope again.

If you request two objects using the same database identifier value in the
same Session, the result will be two references to the same in-memory object.
The following code example demonstrates this behavior, with several load()
operations in two sessions:

Session sessionl = sessions.openSession() ;
Transaction txl = sessionl.beginTransaction() ;

// Load Category with identifier value "1234"
Object a = sessionl.load(Category.class, new Long(1234));
Object b = sessionl.load(Category.class, new Long(1234));

if (a==b) {
System.out.println("a and b are identical.");
}

txl.commit () ;
sessionl.close();

Session session2 = sessions.openSession();
Transaction tx2 = session2.beginTransaction();

Object b2 = session2.load(Category.class, new Long(1234));

if (al=b2) {
System.out.println("a and b2 are not identical.");

}

tx2.commit () ;

session2.close() ;
Object references a and b not only have the same database identity, they also have
the same Java identity since they were loaded in the same session. Once outside
this boundary, however, Hibernate doesn’t guarantee Java identity, so a and b2

4.1.5

The persistence lifecycle 121

aren’t identical and the message is printed on the console. Of course, a test for
database identity—a.getId() .equals (b2.getId())—would still return true.

To further complicate our discussion of identity scopes, we need to consider
how the persistence layer handles a reference to an object outside its identity
scope. For example, for a persistence layer with transaction-scoped identity such as
Hibernate, is a reference to a detached object (that is, an instance persisted or
loaded in a previous, completed session) tolerated?

Outside the identity scope

If an object reference leaves the scope of guaranteed identity, we call it a reference to
a detached object. Why is this concept useful?

In web applications, you usually don’t maintain a database transaction across a
user interaction. Users take a long time to think about modifications, but for scal-
ability reasons, you must keep database transactions short and release database
resources as soon as possible. In this environment, it’s useful to be able to reuse a
reference to a detached instance. For example, you might want to send an object
retrieved in one unit of work to the presentation tier and later reuse it in a second
unit of work, after it’s been modified by the user.

You don’t usually wish to reattach the entire object graph in the second unit of
of work; for performance (and other) reasons, it’s important that reassociation of
detached instances be selective. Hibernate supports selective reassociation of detached
instances. This means the application can efficiently reattach a subgraph of a graph
of detached objects with the current (*second”) Hibernate session. Once a
detached object has been reattached to a new Hibernate persistence manager, it
may be considered a persistent instance, and its state will be synchronized with the
database at the end of the transaction (due to Hibernate’s automatic dirty check-
ing of persistent instances).

Reattachment might result in the creation of new rows in the database when a
reference is created from a detached instance to a new transient instance. For exam-
ple, a new Bid might have been added to a detached 1tem while it was on the pre-
sentation tier. Hibernate can detect that the Bid is new and must be inserted in the
database. For this to work, Hibernate must be able to distinguish between a “new”
transient instance and an “old” detached instance. Transient instances (such as the
Bid) might need to be saved; detached instances (such as the 1tem) might need to
be reattached (and later updated in the database). There are several ways to distin-
guish between transient and detached instances, but the nicest approach is to look
at the value of the identifier property. Hibernate can examine the identifier of a
transient or detached object on reattachment and treat the object (and the

122

4.1.6

CHAPTER 4
Working with persistent objects

associated graph of objects) appropriately. We discuss this important issue further
in section 4.3.4, “Distinguishing between transient and detached instances.”

If you want to take advantage of Hibernate’s support for reassociation of
detached instances in your own applications, you need to be aware of Hibernate’s
identity scope when designing your application—that is, the session scope that
guarantees identical instances. As soon as you leave that scope and have detached
instances, another interesting concept comes into play.

We need to discuss the relationship between Java equality (see chapter 3,
section 3.4.1, “Identity versus equality”) and database identity. Equality is an iden-
tity concept that you, as a class developer, control and that you can (and sometimes
have to) use for classes that have detached instances. Java equality is defined by the
implementation of the equals () and hashCode () methods in the persistent classes
of the domain model.

Implementing equals() and hashCode()

The equals() method is called by application code or, more importantly, by the
Java collections. A set collection, for example, calls equals() on each object you
put in the set, to determine (and prevent) duplicate elements.

First let’s consider the default implementation of equals(), defined by
java.lang.Object, Which uses a comparison by Java identity. Hibernate guarantees
that there is a unique instance for each row of the database inside a session. There-
fore, the default identity equals () is appropriate if you never mix instances—that
is, if you never put detached instances from different sessions into the same set.
(Actually, the issue we’re exploring is also visible if detached instances are from the
same session but have been serialized and deserialized in different scopes.) As soon
as you have instances from multiple sessions, however, it becomes possible to have
a Set containing two Items that each represent the same row of the database table
but don’t have the same Java identity. This would almost always be semantically
wrong. Nevertheless, it’s possible to build a complex application with identity
(default) equals as long as you exercise discipline when dealing with detached
objects from different sessions (and keep an eye on serialization and deserializa-
tion). One nice thing about this approach is that you don’t have to write extra code
to implement your own notion of equality.

However, if this concept of equality isn’t what you want, you have to override
equals () inyour persistent classes. Keep in mind that when you override equals (),
you always need to also override hashCode () SO the two methods are consistent (if
two objects are equal, they must have the same hashcode). Let’s look at some of the
ways you can override equals () and hashCode () in persistent classes.

The persistence lifecycle 123

Using database identifier equality
A clever approach is to implement equals () to compare just the database identifier
property (usually a surrogate primary key) value:

public class User {

public boolean equals (Object other) {
if (this==other) return true;
if (id==null) return false;
if (! (other instanceof User)) return false;
final User that = (User) other;
return this.id.equals(that.getId());
}

public int hashCode() {
return id==null ?
System.identityHashCode (this)
id.hashCode() ;

}

Notice how this equals () method falls back to Java identity for transient instances
(if ia==nu11) that don’t have a database identifier value assigned yet. This is rea-
sonable, since they can’t have the same persistent identity as another instance.

Unfortunately, this solution has one huge problem: Hibernate doesn’t assign
identifier values until an entity is saved. So, if the object is added to a set before
being saved, its hash code changes while it’s contained by the set, contrary to the
contract of java.util.set. In particular, this problem makes cascade save (dis-
cussed later in this chapter) useless for sets. We strongly discourage this solution
(database identifier equality).

Comparing by value

A better way is to include all persistent properties of the persistent class, apart from
any database identifier property, in the equals() comparison. This is how most
people perceive the meaning of equals (); we call it by value equality.

When we say “all properties,” we don’t mean to include collections. Collection
state is associated with a different table, so it seems wrong to include it. More
important, you don’t want to force the entire object graph to be retrieved just to
perform equals (). In the case of user, this means you shouldn’t include the items
collection (the items sold by this user) in the comparison. So, this is the implemen-
tation you could use:

124

CHAPTER 4
Working with persistent objects

public class User {

public boolean equals (Object other) {

if (this==other) return true;

if (! (other instanceof User)) return false;

final User that = (User) other;

if (!'this.getUsername () .equals(that.getUsername())
return false;

if (!'this.getPassword() .equals(that.getPassword())
return false;

return true;

}

public int hashCode() {

int result = 14;
result = 29 * result + getUsername () .hashCode() ;
result = 29 * result + getPassword() .hashCode() ;

return result;

}
However, there are again two problems with this approach:

m |Instances from different sessions are no longer equal if one is modified (for
example, if the user changes his password).

m |nstances with differ